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Abstract We investigate the properties of the

recently proposed “shotgun” sampling approach

for the common inputs problem in the func-

tional estimation of neuronal connectivity. We

study the asymptotic correctness, the speed of

convergence, and the data size requirements of

such an approach. We find that the shotgun ap-

proach can be expected to allow the inference of

the complete connectivity matrix in large neu-

ronal populations under some rather general

conditions. However, we find that the poste-

rior error of the shotgun connectivity estimator

grows quickly with the size of the unobserved

neuronal populations, the square of the aver-

age connectivity strength, and the square of the

observation sparseness. This implies that the

shotgun connectivity estimation will require sig-

nificantly larger amounts of neuronal activity

data whenever the number of neurons in ob-

served neuronal populations remains small. We

present a numerical approach for solving the

shotgun estimation problem in general settings

and use it to demonstrate the shotgun connec-
tivity inference in the examples of simulated

synfire and weakly coupled cortical neuronal

networks.
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1 Introduction

Recent advances in multi-neuronal activity re-

cordings using calcium-sensitive fluorescence im-

aging have made it possible to image the activ-

ity of large neuronal populations over extended

periods of time (Tsien, 1989; Yuste et al., 2006;

Cossart et al., 2003; Ohki et al., 2005; Reddy

et al., 2008a; Grewe et al., 2010). Bulk-loading

of organic calcium-sensitive fluorescent dyes of-

fers the fluorescent signal-to-noise ratio (SNR)

sufficient for resolving individual action poten-

tials (spikes) of neurons (Yuste et al., 2006;

Stosiek et al., 2003) and genetically encoded

calcium indicators are approaching the SNR

levels necessary for neuronal activity imaging

with single spike accuracy (Wallace et al., 2008).

Modern cooled CCD-microscopy can allow im-

aging of calcium fluorescence in neuronal pop-

ulations in-vitro with frame-rates of over 60

Hz (Djurisic et al., 2004) and 2-photon laser

scanning microscopy offers similar frame-rates

in-vivo (Iyer et al., 2006; Salome et al., 2006;
Reddy et al., 2008b; Cotton et al., 2013; Theis

et al., 2015). These advances now allow study-

ing the single-cell structure of neuronal circuits

in the brain using accurate statistical approaches

(Pillow et al., 2008; Stevenson et al., 2008a;

Stevenson et al., 2008b; Stevenson et al., 2009;

Mishchenko et al., 2011).

One of the biggest challenges faced by the

functional analysis of neuronal connectivity in

the brain remains the presence of unobserved or

hidden inputs in the observed neuronal popula-

tion activity (Nykamp, 2007; Pillow and Latham,

2007; Vidne et al., 2009). Because functional
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2 Yuriy Mishchenko

connectivity analysis relies on correlating the

activity of different neurons in a neuronal pop-

ulation over extended periods of time, the pres-

ence of unobserved inputs can contribute er-

rors to such inference. In particular, the clas-

sical “common inputs” scenario causes one to

mistake the correlations observed between two

neurons because of their correlated hidden in-

puts for a direct connection between them (Ny-

kamp, 2005; Nykamp, 2007; Kulkarni and Pa-

ninski, 2007; Pillow and Latham, 2007). De-

spite rapid progress in experimental neuronal

population activity imaging methods, the si-

multaneous observation of the activity of all

neurons with required temporal resolution even

in the smallest of neuronal circuits is currently

not feasible, and the development of robust com-

putational techniques for overcoming the hid-

den inputs problem remains one of important

open questions in computational neuroscience

(Nykamp, 2005; Nykamp, 2007; Kulkarni and

Paninski, 2007; Pillow and Latham, 2007; Vidne

et al., 2009; Keshri et al., 2013).

Recently a promising approach for overcom-

ing the hidden inputs problem—the shotgun

sampling—had been proposed in (Turaga et al.,

2013; Keshri et al., 2013; Soudry et al., 2015).

In this approach, neurons in a large neuronal

population are proposed to be imaged randomly

in small groups, whereas the connectivity ma-

trix of the complete neuronal population is as-

sembled statistically by combining the infor-

mation about the neuronal connectivity con-

tained in different such partial measurements.

The shotgun approach offers the possibility of

reconstructing the connectivity in large neu-

ronal circuits by using limited imaging resources,

without the need to simultaneously image the

entire neuronal circuit.

In this paper, we perform a systematic anal-

ysis of certain aspects of the shotgun sampling

proposal such as the asymptotic correctness of

the respective connectivity estimator, the ex-

pected speed of convergence, and the necessary

data sizes. (Keshri et al., 2013; Soudry et al.,
2015) provide a numerical demonstration of the

shotgun connectivity estimation approach us-
ing some simulated models. However, it may

not be clear right away if the shotgun connec-

tivity estimation must really be free from the

hidden inputs problem. One may observe that,

even as all neurons in a neuronal population

do get imaged with this approach over different

points of time, the observations still fail to pro-

vide a complete picture of the input-output re-

lationships for even a single neuron in the pop-

ulation: the total number of neurons that need

to be simultaneously observed to image all the

inputs of even a single neuron in mammalian

cortex can be as high as 10,000. Without hav-

ing the information about the complete set of

inputs and outputs of any single neuron in a

circuit, one may wonder if the hidden inputs

problem will really be resolved. Furthermore, if

the shotgun approach does allow the unambigu-

ous determination of the connectivity matrix in

a complete neuronal circuit, what are the trade-

offs that had been made? In particular, what is

the minimal imaging time required for a given

accuracy of the connectivity matrix estimation

and how does this time scale with the size of

the unobserved neuronal populations, observa-

tions’ sparseness, and other parameters?

In this work, we show that the shotgun ap-

proach can be indeed expected to allow recover-

ing the complete connectivity matrix in statis-

tical neuronal activity models under some ra-

ther general conditions. We estimate the speed

of convergence of the shotgun connectivity es-

timation and show that the imaging time re-

quired to achieve a given accuracy in shotgun

estimation scales proportionally to the number

of neurons in the unobserved neuronal popula-

tions as well as the square of the typical con-

nectivity strength and the inverse square of the

fraction of neurons contained in a typical ob-

servation. This scaling is inopportune for the

reconstructions of neuronal connectivity in the

experiments where the number of unobserved

neurons will remain large or the fraction of ob-

served neurons will be small. We also present a

numerical approach for solving the connectivity

estimation problem in general neuronal popula-

tion activity models using the shotgun imaging

experiments, and demonstrate its applications

to the shotgun connectivity estimation in sim-
ulated small realistic neuronal networks.

We focus in the discussion in this paper
specifically on the problem of inference of un-

derlying neuronal connectivity matrix from sparse

neuronal activity observations. In the case of

fluorescent calcium imaging—currently the most

plausible modality for collecting large scale neu-

ronal population activity data—another impor-

tant component of such inference is the decon-

volution of calcium fluorescence signal into un-

derlying neuronal spike trains. In recent years,

significant progress had been achieved with re-
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Consistent neural connectivity estimation using shotgun sampling 3

spect to this deconvolution problem, for exam-

ple, see (Theis et al., 2015) for a benchmark

and survey of such modern deconvolution ap-

proaches. At the same time, experimental trials

indicate that existing calcium signal deconvo-

lution methods may still need significant im-

provements to allow their robust use in prac-

tical settings (Cotton et al., 2013; Theis et al.,

2015). In this paper, we do not consider this im-

portant aspect of the analysis of calcium imag-

ing data. Instead, we focus on the mathematical

and computational problems of specifically neu-

ronal connectivity estimation from the shotgun

imaging data, assuming that the deconvolved

neuronal activity had been made available by

other means or that an effective neuronal con-

nectivity model is used for the continuous cal-

cium fluorescence signal. In the future, the in-

corporation and the impact of the calcium sig-

nal deconvolution problem to functional infer-

ence of neuronal connectivity will require more

detailed investigation, including the impact of

increased uncertainties in spike timings (such

as extracted from low frame-rate calcium im-

aging data), apparent possibility of high frac-

tions of lost spikes in existing calcium signal de-

convolution methods (Cotton et al., 2013) and

their vulnerability to overestimating bursting

and underestimating isolated neuronal spiking

(Theis et al., 2015).

It should be emphasized that while (Keshri

et al., 2013; Soudry et al., 2015) consider the

shotgun connectivity estimation numerically in

one statistical model and demonstrate its em-

pirical utility by means of simulations, this pa-

per presents theoretical results about the shot-

gun connectivity estimation that apply to a

broad family of models. That notwithstanding,

the model considered in (Keshri et al., 2013;

Soudry et al., 2015) is not specifically in the

family considered here, as it includes terms for

time-varying external stimulus inputs, which is

not treated in this work.

The remainder of the paper is organized

as follows. In Materials and Methods, Section
2.1, we review the shotgun neuronal connec-

tivity estimation problem and introduce some
notation and mathematical formalism. In Sec-

tion 2.2, we discuss the class of statistical mod-

els of (spontaneous) neuronal population activ-

ity considered in this work. In Section 2.3, we

present a numerical EM algorithm for solving

the shotgun connectivity estimation problem in

general causal models of neuronal population

activity. In Section 2.4, we present the details

of our numerical simulations.

In Results, Section 3.1, we present a theo-

retical argument that “shotgun-like” neuronal

activity imaging experiments can be expected

to allow recovering the complete connectivity

of large neuronal populations very generally,

as long as certain conditions are satisfied by

the set of neuronal subpopulations covered dur-

ing sparse neuronal activity imaging. We also

present a more detailed analysis of the shot-

gun connectivity estimation in linear, exponen-

tial generalized linear, and generalized linear

models of neuronal activity. In Section 3.2, we

build on the results of Section 3.1 to demon-

strate that the shotgun neuronal activity im-

aging can be organized in a different and far

more advantageous way both from the point

of view of experimental implementations and

the data analysis. In Sections 3.3 and 3.4, we

present the shotgun connectivity estimation in

simulated linear and more realistic generalized

linear neuronal network models. Discussion and

conclusions follow in Section 4.

2 Materials and Methods

2.1 The shotgun sampling approach for

neuronal connectivity estimation

In the shotgun sampling, one’s objective is to

recover the effective connectivity matrix of a

large neuronal population using a collection of

partial samples of the activity of that popula-

tion’s different subpopulations. One simple way

to visualize this idea is to think about recon-

structing a large image by using small frag-

ments of that image obtained from its different

locations.

More formally, we define the effective con-

nectivity matrix W as a parameter of a sta-

tistical model of neuronal population activity,

P (X|W), where X stands for the raster of the

historical activities of the neurons in a neuronal
population and P (X|W) stands for the likeli-

hood of observing a particular raster of neu-
ronal activity X given W. In network models

of neuronal activity, W typically is a matrix

W = (wij) having as many rows and columns

as there are neurons in the population, N , and

where each element wij characterizes the im-

pact of the past activity of one “input” neuron

j on the activity of one “output” neuron i. Our
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4 Yuriy Mishchenko

objective, therefore, is to estimate the complete

connectivity matrix W given only partial views

of the neuronal activity raster X .

In the context of this problem, we introduce

below the following notations. We denote the

raster of the activities of the entire neuronal

population (that is, both observed and unob-

served or hidden) over all observations by the

subscript-less symbol X . We denote the activ-

ity of the entire neuronal population during a

single observation t by the symbol Xt. Thus,

X = {Xt, t = 1 . . . T}, where T is the total

number of observations.

Similarly, we denote the collection of all neu-

ronal activities that had been observed by the

subscript-less symbol X. The activity of all ob-

served neurons during a single observation t

is denoted by the symbol Xt, respectively, so

that X = {Xt, t = 1 . . . T}. Finally, the col-

lections of unobserved neuronal activities over

all and a single observation are denoted by the

symbols Y and Yt, respectively, and likewise

Y = {Yt, t = 1 . . . T}.
We now can formally state the shotgun es-

timation problem as the problem of estimating

the effective connectivity matrix W of a sta-

tistical model of neuronal population activity

P (X|W) given a set of partial observations of

that model’s activity X.

For greater simplicity of the discussion to

follow, in a significant part of this manuscript

we will focus on the shotgun connectivity esti-

mation formulated for a single output neuron

and a population of neuronal inputs that is ob-

served sparsely. In this picture, the output neu-

ron is continuously monitored while the set of

the observed input neurons changes. This as-

sumption allows for a significant simplification

of the arguments while not causing any signif-
icant loss of generality. The latter is because

in a typical network model of neuronal activity
the activities of individual neurons are condi-

tionally independent given the activity of the

presynaptic neuronal populations and respec-

tive input connection weights. In other words,

the full likelihood P (X|W) factorizes over the
rows of the connectivity matrix W,

P (X|W) =
�

i,t

P (Xit|{Xt� , t
� < t};Wi), (1)

where Wi = {wij , j = 1 . . . N}. Thus, it is al-

ways possible to consider the estimation of W
as such done one row Wi at a time.

To summarize the notation conventions to

be consistently followed in this paper, the script

symbolW will always refer to the complete con-

nectivity matrix of an entire neuronal popula-

tion, while the symbol Wi will always refer to

a single row of that matrix defined by all input

connection weights of one neuron. The symbol

wij will refer to a single connection weight from

W corresponding to one output neuron i and

one input neuron j.

The script symbols X and Xt will be used

to refer to the neuronal activity of the entire

neuronal population, whereas the plain symbols

X, Xt, Y , and Yt will be always used to refer

to the observed and the unobserved parts of

that population’s activity, respectively. We will

sometimes make use of the symbols Xt and Yt

to refer to the set of neurons contained in Xt

or Yt, as opposed to their actual activities. This

distinction will be always made clear in the con-

text. Finally, we will always understand Xt, Xt

and Yt to be column-vectors, and Wi will al-

ways be a row-vector.

2.2 Statistical causal models of neuronal

population activity

In Section 2.1, the model of neuronal popula-

tion activity was specified as a general paramet-

ric model describing the probability of the re-

alizations of different neuronal activity rasters

X , P (X|W). However, in neuroscience one is

frequently interested in the models of neuronal

activity that are causal in nature. Such models

can be formulated in terms of general Markov

models such as described by the relationship

Xt ∼ P (Xt|Xt−1;W), (2)

where Xt is the activity of the neuronal popu-
lation at time t and P (Xt|Xt−1;W) is the prob-

ability of the realization of activity pattern Xt

given one previous state of the neuronal pop-

ulation Xt−1 and the model parameter W. It

may need to be pointed out that Xt may need to

refer to a more general neuronal state than such

described by only the spike raster or the firing

rates of neurons. Namely, Xt may be required

to also define the quantities such as the mem-

brane potentials, synaptic currents, and other

internal parameters of neurons whose evolution

determines the spiking rates. In terms of such a

“generalized” state, however, any causal model
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Consistent neural connectivity estimation using shotgun sampling 5

of neuronal activity can be represented as the

model defined by Eq. (2).

In this work, we focus on two specific cases

of the general model (2): the linear model of

neuronal activity and the generalized linear mo-

del (GLM) of neuronal activity, to be discussed

in greater detail below.

2.2.1 The linear model of neuronal activity

The linear model of neuronal activity is a sim-

ple model where input and output neuronal

activities are related linearly. In neurophysio-

logical context, such a model can describe the

evolution of suitably smoothed firing rates in

a neuronal population or the evolution of di-

rectly the ΔF/F calcium signal variables as-

sociated with that firing rates, in an effective

model sense. In the context of this paper, the

linear model of neuronal activity presents the

key advantage of allowing the analysis of the

shotgun connectivity estimation to be carried

out analytically.

More specifically, in the linear neuronal ac-

tivity model the activity of a neuronal popu-

lation is modeled by using a set of continuous

activity measures Xt, which can be interpreted

as appropriately smoothed neuronal firing rates

or calcium imaging signals, as described above.

The input-output relationship between these

variables is

Xt+1 = WXt + �t. (3)

Here, Xt is an N -element column-vector encod-

ing the activity of a population of N neurons

and the index t plays the role of discrete time.

The parameter W is a N ×N connectivity ma-

trix, and � is an i.i.d. normal random noise

variable. Without loss of generality, we can as-

sume � to have the variance of one, so that the
model probability densities P (Xt|Xt−1;W) and

P (X|W) are given by

P (Xt|Xt−1;W) ∝ exp(−(Xt −WXt−1)
2/2) (4)

and

P (X|W) ∝ exp
�
−
�

t

(Xt+1 −WXt)
2/2

�
. (5)

2.2.2 The generalized linear model of neuronal

activity

The generalized linear model (GLM) of neu-

ronal activity is a general powerful class of sta-

tistical models of spiking neuronal population

activity described as a system of coupled inho-

mogeneous Poisson processes. GLM has been

used in the literature quite extensively to mo-

del the statistical properties of individual neu-

rons as well as large neuronal populations (Bril-

linger, 1988; Chornoboy et al., 1988; Brillin-

ger, 1992; Plesser and Gerstner, 2000; Paninski

et al., 2004; Paninski, 2004; Rigat et al., 2006;

Truccolo et al., 2005; Nykamp, 2007; Kulkarni

and Paninski, 2007; Pillow et al., 2008; Vidne

et al., 2009; Stevenson et al., 2009).

In this work we consider two forms of such

GLM of neuronal activity. The first GLM is de-

fined as an inhomogeneous Poisson process de-

scribed by

P{Xit = s} = (λit)
se−λit/s!,

λit = f
�
bi +

N�
j=1

wijXj,t−1

�
Δt,

(6)

where the neuronal activity variables Xit are

the Poisson random variables indicating the spike

count of different neurons i = 1, 2, . . . , N in dif-

ferent time bins t of size Δt, bi are constant

offset parameters, and wij are coupling weights

parameters. f(.) is a nonlinear rate function.

The diagonal weights wii can be used to mo-

del self-interactions that can exist in neuronal

spike trains, such as refractory periods, burst

firing, periodic firing, etc., and the off-diagonal

weights wij model the interactions between the

neurons. Longer time-dependencies can be in-

corporated in model (6) by concatenating into

the state-vector Xt the neuronal spikes from

previous times. The GLM of this form is used in

Section 3.1 to obtain certain theoretical results.

The second GLM form is defined by

P{Xit = s} = (λit)
se−λit/s!,

λit = f
�
bi +

N�
j=1

wijJjt

�
Δt,

(7)

where the driving currents

Jjt = ajJj,t−1 + Xj,t−1 + �jt. (8)

are autoregressive processes with certain decay

constants aj and normal noise �jt ∼ N(0,σ2
j ).

This model may be more advantageous in cer-

tain practical scenarios, where Jjt can be used

to model realistic synaptic currents of different

neurons. More than one autoregressive current

may be defined per neuron, thus allowing this

model to describe complex neuronal responses

as the combinations of Jjt’s with different time

decays. The model given by Eq. (7) reduces
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6 Yuriy Mishchenko

to the model given by Eq. (6) when aj ,σj =

0. Conversely, the model given by Eq. (6) can

be extended approximately to the model given

by Eq. (7) by concatenating into Xt neuronal

spikes from past times. The GLM of form (7)

is used in our numerical simulations in Section

3.4.

The probability densities P (Xt|Xt−1) and

P (X ) in the models described by Eq. (6) and

Eq. (7) are given by

P (Xt|Xt−1; b,W) =

i=N�

i=1

λXit
it e−λit

Xit!
(9)

and

P (X|b,W) =

t=T�

t=1

i=N�

i=1

λXit
it e−λit

Xit!
(10)

2.3 The numerical solution of the shotgun

connectivity estimation problem using the

Expectation Maximization algorithm

The problem of estimating the effective con-

nectivity matrix W from the shotgun sampling

data in realistic settings will require numerical

solution. In this section, we present a numer-

ical approach for solving this problem in the

general case of a causal neuronal activity model

such as described by Eq. (2) using the Expecta-

tion Maximization algorithm (Dempster et al.,

1977).

To recap briefly, the EM algorithm produces

a sequence of parameter estimates Ŵk for a

parametric model P (X|W) with missing data

Y with uniformly increasing likelihoods of the

observed data P (X|Ŵk), guaranteeing at least

a locally-maximum likelihood estimate of W
given X. The sequence of Ŵk is produced by
iteratively maximizing the functions

Q(W|Ŵk) = EP (Y |X,Ŵk)[logP (X,Y,W)],

(11)

where P (Y |X; Ŵk) is the posterior distribution

of the hidden data given available observations

X and the available parameter estimate Ŵk.
This maximization is typically realized by con-

structing M samples of the missing data Y l

from P (Y |X; Ŵk) and calculating Q(W|Ŵk)

as Q(W|Ŵ) = 1
M

�
l logP (X,Y l;W).

To apply the EM algorithm here, we re-

formulate the shotgun connectivity estimation

problem in model (2) as a Hidden Markov Mo-

del (HMM) in which the unobserved neuronal

activities Yt are treated as the hidden states

and the observed activities Xt are treated as

the observations. To implement the EM algo-

rithm, therefore, we first construct a sample

of the missing neuronal activities Y given X

and current estimate of neuronal activity mo-

del Ŵk. In the settings above, this sampling

problem can be stated as drawing a sample of

hidden state sequences Yt from the above HMM

given the observations X. This sampling prob-

lem can be solved efficiently by using the stan-

dard forward-backward algorithm (Rabiner, 1989;

Paninski et al., 2010). Assuming the sample

Y ∼ P (Y |X; Ŵk) had been constructed, we

evaluate Q(W|Ŵk) by using

Q(W|Ŵ) = logP (W) + E[logP (X0)]

+
�
t
E[logP (Xt|Xt−1;W)], (12)

where the expectation values are with respect

to the produced sample of Y . Q(W|Ŵ) can be

made convex with a suitable choice of the cau-

sation in Eq. (2)—for example, by using log-

concave rate functions f in Eq. (6) or Eq. (7).

If the latter can be achieved, the maximum

of Q(W|Ŵ) can be found efficiently by using

standard gradient descent algorithms (Panin-

ski, 2004).

Further details of the implementation of the

EM algorithm for the shotgun connectivity es-

timation problem in this paper can be found in

Appendix A.

2.4 Numerical simulations

We performed numerical simulations of the shot-

gun connectivity estimation in linear and gen-

eralized linear neuronal activity models. In each
simulation, a sparse observation of the activity

of a neuronal network were simulated using the

linear or the generalized linear neuronal activ-

ity models of Section 2.2 and the estimation of

the connectivity matrix was performed using

the EM algorithm of Section 2.3. The details of

these simulations are presented below.

2.4.1 Numerical simulations of the shotgun

connectivity estimation in linear neuronal

activity models

In the simulations using the linear model, the

activity of a model neuronal population of N =
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Consistent neural connectivity estimation using shotgun sampling 7

100 neurons was simulated using Eq. (3) with

the connectivity described by a sparse random

matrix W with sparseness s = 0.1 and nonzero

values distributed uniformly on the interval [0, 1].

For Xt to not diverge to infinity, the largest

right eigenvalue of the connectivity matrix W
needs to remain below 1. To ensure this con-

dition, the connectivity matrix W was divided

after the generation by a number selected in

such a way that the largest eigenvalue of WWT

was made equal to a random number chosen

priorly uniformly on [0,1]. The observations X

were produced by observing the activity of one

output neuron continuously and observing the

activities of the remaining input neurons in the

block-wise round-robin sampling manner descri-

bed in Section 3.2. The row-vector of the input

connection weights of the observed neuron was

numerically estimated from simulated observa-

tions data using an implementation of the EM

algorithm in Matlab, following the discussion of

Section 2.3 and with the size of the EM sample

of hidden neuronal activities M = 100.

2.4.2 Numerical simulations of the shotgun

connectivity estimation in generalized linear

neuronal activity models

We performed more realistic numerical simula-

tions of the shotgun connectivity estimation us-

ing two GLM neuronal networks—a small mo-

del synfire network with large long-range corre-

lations known to be detrimental to functional
connectivity estimation and a realistic model of

weakly coupled network of cortical neurons.

The synfire network was simulated with the

objective to confirm the resolution of the canon-

ical common inputs problem in the shotgun ap-

proach. The synfire model was prepared as an

all-excitatory network of N = 10 neurons with
strong feed-forward connectivity pattern (see

Figure 4). All connection were generated with

large constant strength Wsyn chosen in such a
way that the probability of a post-synaptic neu-

ronal spike conditional on the spike of a con-

nected pre-synaptic neuron was greater than

80%. The activity in that model was simulated

using Eqs. (7-8) with the parameters defined in

Table 2. Observations data was assembled us-

ing the block-wise round-robin sampling strat-

egy described in Section 3.2.

The model of a weakly coupled cortical neu-

ronal network was adopted from (Mishchenko

et al., 2011) and was intended to inspect the

shotgun connectivity estimation in a more re-

alistic setting. The model network faithfully re-

produced the experimental data available about

local cortical neuronal circuits in the literature

(Braitenberg and Schuz, 1998; Gomez-Urquijo

et al., 2000; Lefort et al., 2009; Sayer et al.,

1990). Specifically, the neuronal population was

prepared as 80% excitatory and 20% inhibitory.

The neurons were sparsely connected with each

other randomly and homogeneously, with the

probability of a connection between any two

neurons of 10%. The strength of the excitatory

connections was set using the peak excitatory

post-synaptic potential (PSP) values randomly

chosen from an exponential distribution with

mean 0.5 mV (Lefort et al., 2009; Sayer et al.,

1990). The strength of the inhibitory connec-

tions was set using a similar exponential distri-

bution with the mean chosen so as to balance

the average excitatory and inhibitory inputs in

the network (Abeles, 1991). The Dale’s law was

respected when assigning connection strengths,

that is an excitatory neuron only had excitatory

outgoing connections and an inhibitory neuron

had only inhibitory outgoing connections. All

neurons were given refractory periods of 1 msec

enforced via a self-current Jit with the decay

time of 2 msec and the weight wii = −100 in

Eqs. (7-8). Individual PSPs were modeled us-

ing the alpha function (Koch, 1999) described

as the difference of two exponentials with a rise

time of 1 msec and a decay time of approxi-

mately 10 msec for excitatory and 20 msec for

inhibitory neurons (Sayer et al., 1990). Since

our simulations’ time step was 1 msec, such

PSPs were represented by a single-step jump

followed by an exponential decay of 10 to 20

msec, as described by Eq. (8). The neuronal ac-

tivity was simulated at 1 msec time step ignor-
ing conduction delays, negligible for spatially

compact neuronal circuits. Produced neuronal
activity was downsampled at 100 Hz to sim-

ulate observations using a slow imaging tech-

nique such as calcium imaging, and then the

observations dataset was formed by using the

block-wise round-robin sampling described in

Section 3.2. Table 3 aggregates all parameter

definitions used for these simulations.
In either model, the connectivity matrix was

estimated after simulating the observations data

using a Matlab implementation of the EM al-

gorithm as described in Appendix A. The EM

sample size for the hidden neuronal population

activities was taken as M = 50 for the weakly
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8 Yuriy Mishchenko

coupled cortical network model and M = 150

for the synfire model. Only the connectivity

matrix weights were estimated, assuming that

the PSP time constants were known. This was

done to separate different sources of errors in

the estimation, understanding that the focus

here is on the shotgun connectivity inference.

More generally, it is possible to set the PSP

time constants using the average values avail-

able from physiological data without a signifi-

cant impact on the estimation results, or such

time constants can be estimated as a part of the

EM procedure. For a more in depth discussion

see (Mishchenko et al., 2011).

All numerical experiments in this paper were

performed on a 4 dual-core i7-processor desktop

computer with 8GB of RAM memory. The nu-

merical estimation problems could be generally

solved in a reasonable amount of time on this

workstation, however, we found that the neces-

sity to keep up to M examples of the complete

activity of the hidden neuronal population im-

posed drastic requirements on RAM usage. In

particular, for the GLM cortical network mod-

els described here and using the said worksta-

tion, we were able to solve at most the models

with T = 3000 seconds of neuronal activity ob-

servations and M = 50 examples of hidden ac-

tivity. In this sense, the RAM amount in our

hardware configuration set the limits on the

numerical experimentation that could be per-

formed in this paper.

To set the parameter M , defining the num-

ber of samples used to model the posterior dis-

tribution of hidden neuronal activities, we tried

different M such as M = 10, 50, 100 and 150.

The value of M = 50 was the highest value that

we could try on the above mentioned hardware

configuration for the GLM neuronal networks.
The value M = 150 was the highest that we

could try for the synfire neuronal network. We
found that M = 10 sufficed to obtain a solu-

tion, however, the noise in that solutions was

high so that disconnected neurons frequently

appeared as connected in the estimated con-

nectivity matrices. M = 50 appeared to be suf-
ficient to achieve satisfactory reconstructions of

the weakly correlated cortical neuronal network
models but lacking in the case of the strongly

correlated synfire model. M above 100 were

sufficient to produce satisfactory results in the

case of the synfire model as well.

3 Results

3.1 Correctness of the shotgun neuronal

connectivity estimation

3.1.1 General results for the correctness of the

shotgun neuronal connectivity estimation

One of the biggest challenges of the functional

connectivity estimation in neuroscience remains

the presence of unobserved or hidden inputs in

Table 1 The parameters of the linear neuronal ac-
tivity models simulated in this paper.

Number of neurons 100
Connectivity sparseness 10%
Max observation duration 500 samples
Neurons per imaging block 20%
Imaging strategy block-wise

round-robin

Table 2 The parameters of the synfire GLM model
simulated in this paper.

Number of neurons 10
Base firing rate (exp(bi)) 15 Hz
Actual average firing rate 33 Hz
Simulation time step 1 msec
Max observation duration 50 sec
Neurons per imaging block 20%
Imaging strategy block-wise

round-robin
Excitatory conn. strength (wij) 13
Excitatory PSP rise time 1 msec
Excitatory PSP decay time 1 msec
Refractory time 1 msec

Table 3 The parameters of the realistic GLM cor-
tical neuronal networks simulated in this paper.
Exp(λ) stands for the exponential probability dis-
tribution with mean λ and Np(µ,σ) stands for
the truncated-Normal probability distribution with
mean µ, standard deviation σ, and lower bound p.

Number of neurons 50
Base firing rate (exp(bi)) 10 Hz
Actual average firing rate 10 Hz
Excitatory neurons 80%
Inhibitory neurons 20%
Connectivity sparseness 10%
Simulation time step 1 msec
Max observation duration 3000 sec
Neurons per imaging block 20%
Imaging strategy block-wise

round-robin
Excitatory PSP peak Exp(0.5) mV
Inhibitory PSP peak Exp(-2.3) mV
Excitatory PSP rise time 1 msec
Inhibitory PSP rise time 1 msec
Excitatory PSP decay time N5(10, 2.5) msec
Inhibitory PSP decay time N10(20, 5) msec
Refractory time N1(2, 0.5) msec
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Consistent neural connectivity estimation using shotgun sampling 9

neuronal population activity data. The shot-

gun connectivity estimation is a promising ap-

proach for alleviating this problem, suggesting

to image large neuronal populations in small

groups of random neurons and reconstructing

the complete connectivity matrix from such par-

tial observations.

In this section we demonstrate that the shot-

gun connectivity estimation can be guaranteed

to allow recovering the complete neuronal con-

nectivity matrix under rather general condi-

tions. We assume that the activity of an ob-

served neuronal population, X , is modeled by a

general parametric probability density P (X|W)

with an ”effective” connectivity matrix param-

eter W. We will examine the properties of the

maximum likelihood estimation (MLE) given

the shotgun imaging data. An estimator Ŵ of

a statistical model’s parameter is said to be

consistent if it converges to the true parame-

ter value as the size of the observations sample

tends to infinity. It is known from the asymp-

totic estimation theory that the ML estimators

are consistent whenever the model P (X|W) sat-

isfies certain mild regularity conditions and the

observations distribution P (X|W) possesses no

observation-indistinguishable parameter sets. The

MLE regularity conditions typically require com-

pactness of the parameter space, continuity of

the model probability density, and integrabil-

ity of its log-likelihood functions. The absence

of indistinguishable parameter sets, or model’s

identifiability, requires that P (X|W) is such

that no two distinct neuronal activity models

W �= W � can result in identical observations

distributions P (X|W) ≡ P (X|W �).

It may be instructive to revisit the role the

identifiability condition plays in the consistency
of the MLE. Let us consider a collection of ob-

servations of neuronal population activity {X(k),

k = 1, 2, . . . , T}, such that can be obtained
from repeated runs of an experiment or as dif-

ferent segments of one experiment. We will treat

such observations as independent, with a caveat

that will be more properly addressed in the

Theorem 1 below. In the MLE, one aims to

find the parameter value Ŵ that maximizes the

log-likelihood of the observations {X(k)}. In the

limit of large T , by the Law of Large Numbers

the average log-likelihood function of the obser-

vations {X(k)}, l(Ŵ|{X(k)}), will converge in

probability to the expected log-likelihood func-

tion l(Ŵ) = E[logP (X|Ŵ)],

l(Ŵ|{X(k)}) = 1
T

k=T�
k=1

logP (X(k)|Ŵ)

→ EP (X|W)[logP (X|Ŵ)],

(13)

where the expectation value is with respect to

the distribution P (X|W) with the true parame-

ter value W. Gibbs inequality can then be used

to demonstrate that l(Ŵ) achieves its global

maximum if and only if P (X|Ŵ) ≡ P (X|W)

for all X, whereas by the identifiability con-

dition this now implies Ŵ = W. Under the

technical conditions for limit of maximum to

equal maximum of limit, one then can conclude

that the sequence of the ML estimates ŴT =

argmax l(Ŵ|{X(k)}) converges to the true pa-

rameter value W .

From the point of view of connectivity esti-

mation in incompletely observed neuronal pop-

ulations, the canonical hidden inputs problem

arises for no other reason than the identifia-

bility condition becoming broken. That is, dif-

ferent models of hidden neuronal population’s

connectivity can result in the same distribution

of the observations. For instance, in the classi-

cal example of the hidden inputs problem where

a direct connection is falsely estimated between

two observed neurons, this happens because the

correlated inputs to these neurons from a third

unseen neuron exactly reproduce the activity

that would be observed on these neurons if they

were indeed connected. The violation of iden-

tifiability leads to multiple network models be-

ing able to reproduce the same empirical ob-

servations distribution P (X|W) and, therefore,

achieve the global maximum of the log-likelihood

(13). It is important to observe, however, that

the true connectivity model W still maximizes

the log-likelihood (13) and so also remains a

ML solution. Therefore, it is not that the hid-

den inputs somehow break the estimation of

neuronal connectivity; in the presence of hidden

inputs such estimation is simply not unique.

To examine this situation in the shotgun
estimation, we initially recognize that the ex-

pected log-likelihood of the shotgun observa-
tions can be written as,

l(Ŵ) = ES

�
EP (XS |W)[logP (XS |Ŵ)]

�
, (14)

where S is used here to label particular ob-

served neuronal subpopulations and the exter-

nal average is over all different such subpopula-

tions imaged during a sparse neuronal activity
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10 Yuriy Mishchenko

sampling experiment. XS refers to the part of

the neuronal population’s activity observed on

S and P (XS |Ŵ) is the probability distribution

of such activity given the connectivity model

Ŵ. The inner average is over the true observa-

tions distribution P (XS |W).

Let us now recall the observation that the

true connectivity matrix Ŵ = W is necessarily

a global maximizer of Eq. (14), by Gibbs in-

equality. More significantly, Ŵ = W maximizes

Eq. (14) by simultaneously maximizing all indi-

vidual terms EP (XS |W)[logP (XS |Ŵ)], since ev-

idently P (XS |Ŵ) = P (XS |W) for all S when-

ever Ŵ = W. Let us now ask whether there can

exist another model W � �= W that can achieve

the same maximum. Since Ŵ = W maximizes

Eq. (14) by simultaneously globally maximizing

all EP (XS |W)[logP (XS |Ŵ)], evidently any such

model must also simultaneously maximize all

EP (XS |W)[logP (XS |Ŵ)]. In turn, this implies

that any such alternative maximizer W � must

match the marginal distributions P (XS |W) on

all S inspected in the course of sparse neuronal

activity sampling.

This leads us to the following proposition:

If a sparse neuronal activity imaging scheme

covers a set of partial observations of a neu-

ronal population’s activity P (XS |W) with S

in some collection S = {S}, and if for any

W � �= W there exist at least one S in such

S that P (XS |W) and P (XS |W �) are not iden-

tically same, then the hidden inputs problem
is unequivocally resolved by such an imaging

scheme and the complete connectivity W can

be uniquely identified from such collection of

observations {XS , S ∈ S}.
We formulate this proposition more formally

bellow.

Definition 1 Let P (X|W) be a statistical mo-

del of neuronal population activity X = {Xt,

t = 1, 2, . . .} such that Xt is a stationary
stochastic process, and let P (Xt:t+k|W) be a

stationary distribution of k+1-tuples Xt:t+k =

{Xt, Xt+1, Xt+2, . . . , Xt+k} from P (X|W). Let

S be a set of k+1-tuples of neuronal subpopula-

tions in the model P (X|W), S = {S1:1+k}, such
that for any two different model parameters W
and W � there exist at least one S1:1+k in S such

that P (Xt:t+k|S1:1+k
|W) and P (Xt:t+k|S1:1+k

|W �)
are not identically equal, where Xt:t+k|S1:1+k

is

the restriction of Xt:t+k to S1:1+k. Then we say

that the model P (X|W) is uniquely identified

by the set of distributions P(S) =

{P (Xt:t+k|S1:1+k
|W), S1:1+k ∈ S}.

Note that, if the original model P (X|W) is not

identifiable itself, then we will say that P(S) is

uniquely identifying if it discriminates between

all identifiable classes of the model P (X|W).

Definition 2 Assume that for any tuple of neu-

ronal subpopulations S1:1+k in a set S there ex-

ist a tuple S�
1:1+k ⊃ S1:1+k in a different set S�.

Then we say that S� completely covers S.

Theorem 1 Let P (X|W) be a statistical model

of neuronal population activity X = {Xt, t =

1, 2, . . .} and let S = {St, t = 1, 2, . . .}, S ∼
P (S), be a series of partial observations of that

model’s activity over subpopulations of neurons

St. Let X and S jointly define a stationary and

ergodic stochastic process and assume that the

classical MLE regularity conditions hold for the

model P (X|W), namely:

(A1) the parameter space W ∈ W is compact;

(A2) all distribution densities P (Xt:t+k|W) are

continuous in W;

(A3) E
��� logP (Xt:t+k|St:t+k

|Ŵ)
��
�
< ∞ for all

Ŵ and St:t+k, where the expectation is over

the stationary distribution P (Xt:t+k|W) for the

true W.

Assume further that the model P (X|W) is uniquely

identified in the sense of Definition 1 by a set

of distributions P(S) = {P (Xt:t+k|S1:k+1
| W),

S1:k+1 ∈ S} for some S. Then, for any model of

the partial observations P (S) such that the sup-

port S� = {St:t+k : P (St:t+k) > 0} completely

covers S in the sense of Definition 2 the ML

estimator

ŴT (X , S) = argmax
Ŵ

L(Ŵ|X , S;T ), (15)

where

L(Ŵ|X , S;T ) =
t=T�
t=1

logP (Xt:t+k|St:t+k
, St:t+k|Ŵ),

(16)

is consistent.

Proof The proof can be found in Appendix C.

Theorem 1 makes use of the assumption that

the stochastic process defined by the neuronal

activities Xt together with the sequence of ob-

servations St is ergodic. Ergodicity of a stochas-

tic process means that the averages over time

can be substituted with the averages over the
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Consistent neural connectivity estimation using shotgun sampling 11

stationary distribution of that process. Namely,

the basic Ergodic theorem asserts that

lim
T→∞

1

T

t=T�

t=1

f(θt−1ω) = EP (ω)[f(ω)], (17)

where ω are the state sequence realizations from

the stochastic process, θ is the operator of unit

time-shift, and the expectation on the left is

over the stationary distribution P (ω) (Varad-

han, 2001). Ergodicity is a basic property of

many stochastic processes. In particularly im-

portant case of Markov processes, a Markov

process is known to be ergodic whenever it pos-

sesses a unique stationary distribution (Bellet,

2006).

Theorem 1 further states that, if a sparse

neuronal activity observation protocol S� is able
to inspect all neuronal subpopulations compris-

ing an identifying set of partial neuronal ac-

tivity distributions P(S), then the MLE can

be guaranteed to converge to the correct neu-

ronal connectivity model W assuming the ba-

sic regularity conditions are satisfied. When-

ever the identifying set is covered during such

an observation using either a non-deterministic

or a reasonable deterministic protocol, the re-

sulting neuronal connectivity inference problem

can be said to possess the identifiability prop-

erty, whereas in general identifiability given an

incompletely observed neuronal population can-

not be guaranteed, even if the original full neu-

ronal population model was identifiable.

A further observation is that the nature of

the mapping from the identifying sets P(S) to

the models W is not important, neither is im-

portant by means of which statistics of P(S)

the parameter W can be estimated and how.

As long as such a mapping exists, the full mo-
del W is recoverable via the above MLE.

We formalize this latter observation, we state

the following corollary.

Corollary 1 Let T (X ) be the sufficient statis-

tics of a model of neuronal population activity

P (X|W), and assume that T (X ) can be calcu-

lated from the set of stationary distributions
P(S) = {P (Xt:t+k|S1:1+k

| W), S1:1+k ∈ S}.
Then P(S) is uniquely identifying.

Proof The statement follows from recognizing

that for any two identifiable models W �= W �

the respective sufficient statistics T (X ) have to

be different. This implies that at least one dis-

tribution P (Xt:t+k|S1:1+k
| W) in P(S) necessar-

ily has to be different for W and W � and, thus,
P(S) is uniquely identifying.

Theorem 1 shifts the burden of establishing

the consistency of the shotgun estimation to

the problem of finding uniquely identifying sets

of different neuronal activity models. In gen-

eral, a uniquely identifying set different from

the trivial one, that is, such comprising the

complete observation P (X|W), does not exist.

For certain linear and generalized linear mod-

els of neuronal population activity we obtain

some explicit uniquely identifying sets in Sec-

tion 3.1.5. More generally, based on the inverse

theorem of calculus, it may be suggested that

for general network models of neuronal activity

parametrized by a N×N effective connectivity

matrix W any set of N2 linearly independent

marginal distributions P (XS |W) may be suffi-

cient to locally uniquely identify the complete

connectivity matrix W.

With regard to the former, consider a model

of neuronal activity parametrized by an arbi-

trary probability density P (X|W) defined on a

grid of d points in n dimensions. In general,

such a density contains dn − 1 free parame-

ters needed to specify the probabilities P (X|W)

at each of the dn points of the grid, minus

one normalization condition
�

X P (X|W) = 1.

It is easy to see that the marginal distribu-

tions P (XS |W) of up to n− 1 dimensions fur-

nish n(d − 1) + n(n − 1)/2!(d2 − 1) + ... <

(1 + d)n − dn < ndn−1 linear constraints on

P (X|W). One sees then that even specifying all

marginal distributions together is insufficient

to specify that probability density uniquely, if

d > n. The shotgun estimation can never be

successful in this case—a complete observation

of the model’s activity is required.

With regard to the latter, in practice the

models of neuronal population activity are much

more constrained and often are fully specified
by a single connectivity matrix of N2 elements,

where N is the number of neurons in the model.
Whenever two or more alternative models W
can match the same observations distribution

P (X|W), this can happen in one of two ways:

on a discrete set of observation-equivalent mod-

els {W1,W2, . . .} or on a continuous manifold

of equivalent modelsW also containing the true

model W, see the discussion above. The for-

mer would occur typically due to the presence

of exact or approximate symmetries in the ob-

servations likelihood P (X|W), and we will en-
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12 Yuriy Mishchenko

counter an example of this situation in Section

3.1.2. The latter occurs whenever available ob-

servations are insufficient to uniquely constrain

W, that is, the estimation problem is underde-

termined, and this situation is understood to

correspond most directly to the classical prob-

lem of hidden inputs.

In the latter case one can argue, based on

the inverse theorem of calculus, that it is only

necessary to acquire N2 linearly independent

projections of the probability density P (X|W)

to be able to (locally) uniquely constrain W.

For instance, let Tk(X ) be K statistics of a neu-

ronal population activity model P (X|W) para-

metrized by a N × N connectivity matrix pa-

rameterW. If Tk(X ) → tk(W) uniformly as the

sample size T → ∞, then in the limit of large

sample sizes one can expect to be able to re-

construct the complete connectivity matrix W
by solving the system of nonlinear equations

tk(Ŵ) = Tk(X ). As is well known from calcu-

lus, such a solution is locally unique whenever

theK×N2 Jacobian matrix J = (δtk(Ŵ)/δwij)

at the solution point is nonsingular. When one

has K = N2 linearly independent statistics

available from the observations, such Jacobian

becomes a square matrix and one can expect its

determinant to be generally nonzero, thus pro-

viding for the local uniqueness of the solution

Ŵ.

As a further example, consider the set of all

time-shifted correlations (Σ1)ij = E[Xi,t+1Xjt].

These clearly are functions of the model pa-

rameter W. If the determinant of the Jacobian

J = (δ(Σ1(W))ij/δwi�j�) is nonzero, then one

can expect the knowledge of Σ1 to be sufficient

to uniquely identify the complete connectivity

matrix W at least locally. Here, J is a general

N2×N2 matrix and, with the exception of cer-

tain specific circumstances such as the neuronal

activity model having a structure specifically

causing the degeneracy of J or W belonging to

a set of Lebesgue measure zero, detJ can be

expected to be nonzero and J to be nonsingu-
lar. Respectively, by Corollary 1 the set of all

input-output distributions P (Xi,t+1,Xjt), pro-

viding the statistics Σ1, would be sufficient for

identifying W in such situations.

3.1.2 The shotgun connectivity estimation in

the linear neuronal population activity model

In this section we perform a direct analysis of

the shotgun connectivity estimator in linear neu-

ronal population activity models (3). We con-

sider the input-output form of model (3) formu-

lated for a single continuously observed output

neuron and a population of sparsely observed

input neurons. We introduce a scalar output

variable Zik and two vector input variables Xk

and Yk, representing the activities of the ob-

served and the unobserved input neurons dur-

ing different observations k, respectively, whereas

Zik represents the activity of the output neu-

ron i in an immediately following observation.

These are related by

Zik = WiXk
Xk +WiYk

Yk + �ik, (18)

where Wi is the row of the complete connectiv-

ity matrix W comprised of all input connection

weights of the output neuron i, and WiXk
and

WiYk
are the parts of Wi corresponding to the

observed and the hidden inputs Xk and Yk, re-

spectively. �ik is an i.i.d. normal noise with zero

mean and unit variance.

It should be made clear that here, unlike in

model (3), we assume that the inputs Xk and

Yk are drawn i.i.d. from the stationary distri-

bution of (3). This point is emphasized by our

using in Eq. (18) a separate index k, as op-

posed to the use of time index t in Eq. (3). In

other words, model (18) describes i.i.d. tuples

(Zik, Xk, Yk) distributed according to

P (Zik, Xk, Yk) = P (Zik|Xk, Yk;Wi)P (Xk, Yk),

(19)

where P (Xt, Yt) = P (Xt) is the stationary dis-

tribution of (3).

Model (3) and model (18) are related by

the Ergodic theorem as long as the stochastic

process (3) possesses a unique stationary dis-

tribution. In particular, one can see that the
distribution (19) is exactly the stationary dis-

tribution P (Xi,t+1,Xt) of the stochastic process
Xt defiend by Eq. (3). We show, therefore, that

the complete connectivity matrix W can be ex-

tracted from certain marginal distributions of

P (Xt+1,Xt) by using the MLE formulated for

the model defined by Eq. (18).

The conditions under which the stationary

distribution of the stochastic process (3) ex-

ists need to be specified here. The existence

of a unique stationary distribution of a con-

tinuous state Markov model can be guaranteed

whenever the transition density P (Xt+1|Xt;W)

is continuous in Xt+1 for all Xt, and all trajec-

tories Xt are bounded (Hairer, 2010). In terms
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Consistent neural connectivity estimation using shotgun sampling 13

of the parameters of model (3), these translate

into the requirements that the covariance ma-

trix of the noise term �t is nonsingular and the

absolute value-largest right eigenvalue of the

matrix W is smaller in absolute value than 1.

These requirements are not particularly restric-

tive. In particular, the latter is required for mo-

del (3) to be meaningful. Indeed, if W has a

right eivenvalue greater in absolute value than

1 and the noise’s covariance matrix is nonsin-

gular, then Xt exponentially diverges to infinity

as t → ∞ for all initial conditions, resulting in

a clearly unacceptable model behavior.

The stationary distribution P (Xt, Yt) is Gaus-

sian (Rasmussen and Williams, 2006) and can

be parametrized by its mean and covariance

matrix Σ. By suitably offsetting Xt, it is always

possible to make the mean vanish, however, Σ

cannot be generally reduced. Moreover, Σ sat-

isfies the Lyapunov equation,

Σ = I +WΣWT . (20)

Here, we ignore the latter connection and treat

both the connectivity matrix W and the covari-

ance matrix Σ as the free parameters of model

(18). This has no real impact on the complexity

of our calculations, while allows us to produce

a more general result.

Below we state two main results of this sec-

tion.

Lemma 1 The expected log-likelihood function

of model (18) is

l(Ŵi, Σ̂) =

−1/2E
�

1+WiΣWT
i −2ŴiAXk

WT
i +ŴiA�

Xk
ŴT

i

1+B2
ik

+ log(1 +B2
ik)

�

−1/2E
�
Tr[ΣXkXk

Σ̂−1
XtXt

] + log det Σ̂XkXk

�
,

(21)

where the subscript-notation in Σ refers to the

blocks of Σ corresponding to the neuronal in-
puts identified by Xt and Yt, with * referring

to all row or column elements. B2
ik, AXk

and

A�
Xk

are

AXk
= Σ̂∗Xt

Σ̂−1
XtXt

ΣXt∗
A�

Xk
= Σ̂∗Xt

Σ̂−1
XtXt

ΣXtXt
Σ̂−1

XtXt
Σ̂Xt∗

B2
ik = Ŵi(Σ̂ − Σ̂∗Xk

Σ̂−1
XkXk

Σ̂Xk∗)Ŵ
T
i

(22)

Wi and Σ are the true connection weights and

covariance matrix parameters, respectively, and

the average is over all different subsets of ob-

served neurons Xk.

Proof The proof can be found in Appendix C.

Theorem 2 Consider model (18) parametri-

zed by a connectivity weights vector Wi and a

nonsingular covariance matrix Σ defined on a

compact parameter space Q = {(Wi,Σ)}. The
sequence of the ML estimates of the parameters

(Ŵi, Σ̂) in model (18) converges in the limit of

large numbers of observations Ti → ∞ to the

true values of Wi and Σ whenever the two sets

of submatrices Σ∗Xk
and ΣXkXk

separately tile

the covariance matrix Σ in its entirety.

Proof Under the above assumptions, model (18)

can be seen to satisfy the classical regularity

conditions of the MLE, namely, the compact-

ness of the parameter set, the continuity of log-

likelihood, and the dominance condition. Then,

the sequence of the ML estimates for Wi and Σ

converges in probability as the number of ob-

servations Ti → ∞ to argmax l(Ŵi, Σ̂), where

l(Ŵi, Σ̂) is given by Eq. (21). It can be ver-

ified by direct inspection that Ŵi = Wi and

Σ̂ = Σ achieve the global maximum of Eq. (21)

by separately maximizing the expressions un-

der both expectation values for all Xk. If the

submatrices Σ∗Xk
and ΣXkXk

for sampled Xk

cumulatively (but separately) tile the entirety

of the matrix Σ and moreover Σ is nonsingular,

then the solution of such optimality conditions,

namely, ΣXk∗Wi = ΣXkXk
Σ̂−1

XkXk
Σ̂Xk∗Ŵi and

ΣXkXk
= Σ̂XkXk

for all Xk, is unique and the

maximum is also unique.

Theorem 2 establishes the sufficient condi-

tions for the consistency of the shotgun con-

nectivity ML estimation in the linear neuronal

activity model (3) under the conditions that

the stationary distribution of that model exists

and is unique.

One can point out that the condition of

tiling of Σ by Σ∗Xk
and ΣXkXk

can be re-
stated also as the condition that the set of all

observed input subsets {Xk} covers cumula-
tively the range of possible neuronal inputs j =

1 . . . N (equivalent to Σ∗Xk
tiling Σ) and the

set {Xk × Xk} covers all possible same-time

pairs of neuronal inputs {(j, j�) : j, j� = 1 . . . N}
(equivalent to ΣXkXk

tiling Σ).

Also, the fact of the full coverage of Σ by

the collections of Σ∗Xk
and ΣXkXk

is impor-

tant and not the manner in which that cover-

age was provided. Therefore, any organization

of observations that provides such a coverage

is equally capable of constraining the complete
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Fig. 1 An example of l(Ŵi, Σ̂) for a choice of Wi

and Σ = I along the solution ray Ŵi = αWi, Σ̂ = Σ.
The plot shows that α = 1 is not a unique local
maximum. The second “mirror” optimum is located
at α ≈ −1.

connectivity matrixW. A plausible strategy for

estimating W , for instance, could be to image

the activity of all neuronal pairs (Xit,Xjt) and

(Xi,t+1,Xjt) two neurons or one pair at a time,

in any order.

Finally, we note that although Theorem 2

establishes that the global maximum of Eq. (21)

is unique under specified conditions, the log-

likelihood (21) can and does contain isolated lo-

cal optima different from the global maximum.

In particular, one finds a local “mirror” opti-

mum at Σ̂ = Σ, Ŵi ≈ −Wi in the limit of

small fractions of observed inputs p → 0, Fig-

ure 1. The origin of the mirror optimum is in

the cancellation of the variations of the terms

(1 + B2
ik)

−1 and log(1 + B2
ik), which dominate

Eq. (21) in the limit p → 0 and which are sym-

metric under Wi → −Wi. The difference of the

expected log-likelihoods of the mirror and the

true optima are of the order O(p2) as p → 0.

3.1.3 The hidden inputs problem in the linear

neuronal population activity model

In this section we produce an explicit exam-

ple of the hidden inputs problem in the linear

neuronal activity model, by taking advantage

of l(Wi,Σ) obtained in Section 3.1.2.

Specifically, let us consider a situation where

the set of observed inputs Xt is kept constant

throughout the experiment, Xt ≡ X. In that

case, we can remove from Eq. (21) the expec-

tation over different subsets of observed inputs
Xt. Performing the variation with respect to

ŴiX then yields the following formula for ŴiX ,

ŴiX = WiX +WiY ΣY XΣ−1
XX −ŴiY Σ̂Y XΣ̂−1

XX .

(23)

From Eq. (23) it is easy to see that, if one has

access to the input connection weights of the

hidden neurons, ŴiY = WiY , and the correct

covariances Σ̂XX = ΣXX and Σ̂Y X = ΣY X ,

then it is in fact possible to correctly estimate

the connectivity weights WiX even without ob-

serving the activity of the hidden neuronal pop-

ulation. At the same time, if the input connec-

tion weights of the hidden neurons or the cor-

relations between the hidden and the observed

neurons are ignored, for example, by setting

ŴiY = 0 or Σ̂Y X = 0, then the hidden in-

puts produce a bias in the estimates of the ob-

served neurons’ connectivity that can be explic-

itly stated as

E[ŴiX −WiX ] = WiY ΣY XΣ−1
XX . (24)

3.1.4 The error of the shotgun connectivity

estimator in the linear neuronal population

activity model

We can evaluate the posterior variance of the

shotgun ML connectivity estimator (that is, the

estimator’s error) in the linear neuronal activ-

ity model by calculating the Laplace approxi-

mation in Eq. (21) around Ŵi = Wi. Denoting

Ŵi = Wi + δWi, we find with respect to δWi

l(δWi) ≈
−Ti

2

�
1 + δWi

A�

1+B2 δW
T
i

�
+ o(δW 2

i ).
(25)

From Eq. (25), we obtain the posterior variance

of the ML estimator Ŵi,

var(Ŵi) = (1 +B2)(A�Ti)
−1. (26)

For weakly correlated case, Σ ≈ I, this can be

reduced to a more intuitive expression,

var(Ŵi) =
1 + (1− p)|Wi|22

pTi
, (27)

where p is the fraction of the neurons contained
on average in one observation Xt and |Wi|2 is
the 2-norm of the row-vector of input connec-

tion weights Wi.

Eq. (27) indicates that the posterior vari-
ance of the shotgun connectivity estimator grows

proportionally to the square average of connec-

tivity strength and the number of neurons in

unobserved neuronal populations. The estima-

tor’s variance decreases inversely proportion-

ally to the fraction of neurons contained in ob-

served neuronal populations, p, and the total

observation time of one neuron’s output, Ti.
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Consistent neural connectivity estimation using shotgun sampling 15

As we will see in Section 3, these results

have a particularly simple interpretation: The

error in the shotgun estimator Ŵi is introduced

both by the intrinsic noise � and the variabil-

ity contributed by hidden inputs, ζ = WiYt
Yt.

The reduction of that error for any given con-

nection weight wij is achieved when the output

of neuron i and the input of neuron j are ob-

served together, which occurs in the total of

pTi observations. In particular, if both the out-

put and the input neurons are observed ran-

domly with probability p, per the original shot-

gun proposal, so that Ti = pT , then the shot-

gun estimator’s error is respectively

var(Ŵi) =
1 + (1− p)|Wi|22

p2T
(original shotgun),

(28)

where T now is the total number of observa-

tions and p2T is the number of the observations

containing a given input-output neuronal pair.

3.1.5 The sufficient correctness conditions for

the shotgun connectivity estimation in certain

neuronal activity models

In this section we present certain explicit re-

sults for the correctness of the shotgun con-

nectivity estimation in some neuronal activity

models.

The theorem below asserts that under ra-

ther general conditions the set of triple-distri-

butions P (Xi,t+1,Xjt,Xkt) is uniquely identi-

fying in network models of neuronal activity

when the number of neurons is large.

Theorem 3 Consider a family of general (”net-

work type”) models of neuronal population ac-

tivity described by a N ×N connectivity matrix

W and a transition probability density

P (Xt|Xt−1;W) =

i=N�

i=1

P (Xit|WiXt−1), (29)

where Wi is the i
th row of W and N = dim(Xt).

Let model (29) define an ergodic stochastic pro-

cess and let logP (Xt|Xt−1;W) be L1 integrable

under the stationary distribution of that pro-
cess. Also, let lT,N (W|X ) be the average log-

likelihood function of the realizations of neu-

ronal activity patterns X = {Xt, t = 1 . . . T} in
model (29),

lT,N (W|X ) = 1
NT

t=T�
t=1

i=N�
i=1

logP (Xit|Xt−1;W).

(30)

In that case, if the sums

Jit =

j=N�

j=1

wijXj,t−1 → N (mi,σ
2
i ) (31)

in distribution as N → ∞ for tuples Xt−1 from

P (Xt−1) and some mi and σi, possibly func-

tions of N (the Central Limit Theorem), then

the set of all triple-distributions P (Xi,t+1,Xjt,Xkt)

is uniquely identifying for models (29) in the

limit N → ∞ and, furthermore, lT,N (W|X ) →
l∞(W) almost surely as T,N → ∞, where

l∞(W) = 1
N

i=N�
i=1

�
dXidJi

1
(2πWiΣ(Xi)WT

i )1/2
×

logP (Xi|Ji +Wiµ(Xi))e
−J 2

i /(2WiΣ(Xi)W
T
i )

(32)

and µ(Xi) = E[Xt|Xi,t+1 = Xi] and Σ(Xi) =

cov(Xt| Xi,t+1 = Xi).

Proof The proof can be found in Appendix C.

In Theorem 3, we directly require the va-

lidity of the Central Limit Theorem (CLT) for

the sums Jit. The CLT is seen to hold very

widely in practice (Lehmann, 1999). However,

the specific conditions for the validity of the

CLT for sums of dependent random variables,

such as the tuples Xt ∼ P (Xt), remain the

subject of a very active research area in statis-

tics and an extensive body of literature, for ex-

ample, see (Berk, 1973; Newman, 1984; Douk-

han, 1994; Lehmann, 1999; Coulon-Prieur and

Doukhan,2000; Johnson, 2001; Dedecker and

Merlevede, 2002; Bradley, 2005; Davidson, 2006;

Klartag, 2007; Guillotin-Plantard and Prieur,

2010; Neumann, 2013; Hall and Heyde, 2014)

and references therein. In practice, it may be

the easiest to verify the CLT condition in The-

orem 3 directly, by checking that the shapes of
P (Jit) approach Gaussian. In particular, (Soudry

et al., 2015) find that the CLT approximation

works well in the exponential-GLM of spiking

neuronal activity.

Theorem 3 can be directly applied to the

case of the GLM of neuronal population activ-

ity. The GLMs of neuronal activity are of spe-

cial interest in theoretical and computational

neuroscience, see (Brillinger, 1988; Chornoboy

et al., 1988; Brillinger, 1992; Plesser and Gerst-

ner, 2000; Paninski et al., 2004; Paninski, 2004;
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16 Yuriy Mishchenko

Rigat et al., 2006; Truccolo et al., 2005; Ny-

kamp, 2007; Kulkarni and Paninski, 2007; Pil-

low et al., 2008; Vidne et al., 2009; Stevenson

et al., 2009). Below we state two key results in

that respect, which can be obtained by a direct

application of Eq. (32).

Corollary 2 Consider a family of generalized

linear models of neuronal population activity

(6) satisfying the conditions of Theorem 3. Then,

the set of all distributions P (Xi,t+1,Xjt,Xkt) is

uniquely identifying in the limit N → ∞ and

lT,N (b,W|X ) →
l∞(b,W) = J1(b,W)− J2(b,W),

(33)

where

J1(b,W) = 1
N

�
i

µi

�
1

(2πWiΣ(i)WT
i )

1
2
×

�
dJ log f(J +m�

i)e
−J 2/(2WiΣ(i)WT

i )
� (34)

and

J2(b,W) = 1
N

�
i

�
1

(2πWiΣWT
i )

1
2
×

�
dJ f(J +mi)e

−J 2/(2WiΣWT
i )

�
.

(35)

Here, mi = bi +Wiµ, m
�
i = bi +Wiµ

�(i), µ =

E[Xt], µ
�(i) = E[Xt|Xi,t+1 = 1], Σ = cov(Xt),

and Σ(i) = cov(Xt|Xi,t+1 = 1).

Corollary 3 Consider the conditions of Corol-

lary 2 and let the neuronal activity model be the

exponential-GLM with the nonlinearity function
f(.) = exp(.). Then,

J1(b,W) = 1
N (µT b+ Tr[WΣT

1 ]) (36)

and

J2(b,W) = 1
N

�
i

ebi+Wiµ+2WiΣWT
i , (37)

where µ = E[Xt], Σ1 = E[Xt+1X T
t ] and Σ =

cov(Xt), and the uniquely identifying distribu-

tions are P (Xit,Xjt) and P (Xi,t+1,Xjt).

Note that in the exponential-GLM the spe-

cial form of the log-likelihood allows one to re-

lax the identifying set from all triple-distribu-

tions P (Xi,t+1,Xjt,Xkt) to all pairwise same-

time and input-output neuronal activity distri-

butions P (Xit,Xjt) and P (Xi,t+1,Xjt).

Finally, for the linear model of neuronal ac-

tivity (3) we have a similar result establishing

that the identifying distributions are P (Xit,Xjt)

and P (Xi,t+1,Xjt).

Theorem 4 Consider the linear model of neu-

ronal population activity (3). Assume that the

stationary distribution of (3) exists and is unique.

Furthermore, assume that the covariance ma-

trix cov(Xt) is nonsingular. Then, the uniquely

identifying distributions are P (Xit,Xjt) and

P (Xi,t+1,Xjt), and

W = Σ1(Σ + µµT )−1, (38)

where µ = E[Xt], Σ1 = E[Xt+1X T
t ] and Σ =

cov(Xt).

Proof Multiplying Eq. (3) on the left with X T
t

and averaging over time yields

Σ1 = W(Σ + µµT ), (39)

where µ, Σ and Σ1 are as defined above. By

the assumptions of the theorem, the above ex-

pected values exist and are unique. If Σ is non-

singular, then one can multiply Eq. (39) on the

right with (Σ + µµT )−1 to obtain

W = Σ1(Σ + µµT )−1, (40)

which establishes that µ, Σ and Σ1 are the

sufficient statistics. It then follows from Corol-

lary 1 that P (Xit,Xjt) and P (Xi,t+1,Xjt) are

uniquely identifying.

Note that the conclusions of Theorem 4 are

clearly identical to the results of Section 3.1.2:

providing all distributions P (Xi,t+1,Xjt) and

P (Xit,Xjt) is equivalent to fully tiling Σ with
the submatrices Σ∗Xt

and ΣXtXt
. Also, sup-

plementing Eq. (40) with Eq. (20) allows one

to show that Σ1 itself is in fact sufficient to

uniquely constrain W at least locally, by solv-

ing Eq. (20) for Σ(W) first and then Eq. (40)

for W(Σ1). This is in line with the general dis-

cussion in the end of Section 3.1.1.

3.1.6 More efficient parameter estimation in
certain neuronal activity models

Theorems 2, 3 and 4 can be used to further

offer an advantageous way for calculating the
parameters of linear and generalized linear neu-

ronal activity models in neuronal activity im-
aging experiments. Specifically, if the statistics

µ = E[Xt], Σ = cov(Xt) and Σ1 = E[Xt+1X T
t ]

can be obtained from observations, then one

can directly use Theorem 4 to find, for instance,

Ŵ = Σ1(Σ + µµT )−1 (41)
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for the connectivity parameter W of a linear

model of neuronal activity. These statistics can

be obtained from observations efficiently and

used then to perform the estimation from data

of very large size as well as in online manner.

For the exponential-GLM, similarly, we make

use of Eq. (36) and Eq. (37) in Theorem 3 to

obtain

(b̂, Ŵ) = argmax
b,W

�
µT b+ Tr[WΣT

1 ]−
�
i

ebi+Wiµ+2WiΣWT
i

�
.

(42)

For the GLM of neuronal activity with gen-

eral nonlinearity, we obtain from Theorem 2

(b̂, Ŵ) = argmax
b,W

�
J1(b,W)− J2(b,W)

�
, (43)

where J1 and J2 are defined by Eq. (34) and

Eq. (35), respectively.

3.2 Alternative organizations of the shotgun

neuronal population activity imaging

The results obtained in Section 3.1 have impor-

tant implications for the question of organiza-

tion of the shotgun neuronal activity imaging

experiments. In particular we see that, to be

able to reconstruct a complete neuronal con-

nectivity matrix, it is only important that the

identifying set P(S) is covered by the observa-

tions, and the manner in which such coverage

is provided is not important. Per general dis-

cussion in Section 3.1.1, one may expect that

the imaging of all input-output neuronal pairs

in a neuronal network may be generally suffi-

cient to uniquely identify the connectivity ma-

trix of complete neuronal populations. Alter-

natively, Section 3.1.5 provides certain specific

conditions that can be guaranteed to allow the

identification of complete neuronal connectiv-
ity matrices in several general settings.

These results imply that alternative organi-
zations of the shotgun neuronal activity imag-

ing can be introduced that can be more advan-

tageous for experimental settings.

A particularly advantageous and conceptu-

ally simple one such organization of neuronal
activity imaging is the block-wise round-robin

sampling, illustrated in Figure 2. In this ap-
proach, a neuronal population is imaged using

a sequence of contiguous blocks. Each pair of in-

put and output blocks is imaged for a set period

of time Tb. The blocks are then moved through
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Fig. 2 Block-wise round-robin neuronal population
activity imaging strategy. In this strategy, the neu-
ronal population is imaged as a sequence of contigu-
ous blocks of input and output neurons. During one
section of the experiment, the neurons in one in-
put and one output block are observed simultane-
ously for a fixed time Tb. All possible combinations
of input and output blocks are observed during the
entire experiment. This figure illustrates the block-
wise round-robin sampling strategy applied to a hy-
pothetical population of 100 neurons with 20 neu-
rons observed in each input and output block. White
color indicates the neurons in the output blocks and
gray color indicates the neurons in the input blocks.
In each observation, the activity of all marked neu-
rons should be observed simultaneously.

the population so that all possible combina-

tions of input and output blocks are inspected

throughout the complete experiment.

The key advantage of the block-wise round-

robin strategy is that it can be easily imple-

mented by using already existing calcium im-

aging tools, by scanning two confocal or two-

photon microscopes over a large population of

neurons. Another advantage of this strategy is

the computational problem of the connectivity

estimation, which is much simpler than that
obtained for fully random sampling of neurons,

such as used in (Turaga et al., 2013; Keshri

et al., 2013).

Block-wise round-robin sampling strategy is

capable of collecting all input-output and same-

time pairs of neuronal activities (Xi,t+1,Xjt)

and (Xit,Xjt), respectively, and per the dis-
cussion above can be guaranteed to correctly

estimate the connectivity matrix in the linear

and the exponential generalized linear models

of neuronal activity. The block-wise round-robin

sampling strategy with larger number of blocks
can be used to collect the triple-correlations

(Xi,t+1,Xjt,Xkt).

3.3 The impact of the missing data on the

connectivity estimation

In Section 3.1.4 we calculated the error of the

shotgun connectivity estimator in the linear neu-
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18 Yuriy Mishchenko

ronal activity model. It is interesting now to re-

turn to these results from a somewhat different

perspective.

In particular, let us consider a segment of a

block-wise round-robin neuronal activity imag-

ing experiment with a fixed input and output

observation blocks. We can relate the activity

of the neurons in the observed input and output

blocks as

Zt = f(WZXXt + ζt + �t), (44)

where Zt is the column-vector of the activities

of the neurons in the output block, Xt is the

column-vector of the activities of the neurons

in the input block, and we introduced a new

random variable ζ = WZY Y , which represents

the combined input of the hidden neurons into

the observed neuronal outputs.

Posed from this perspective, the shotgun

connectivity estimation appears now as the prob-

lem of estimating the blocks of connectivity ma-

trix WZX given the observations of the activ-

ity of all relevant input and output neurons,

whereas the unobserved neurons enter that es-

timation in the form of additional noise ζ. The

noise ζ is both structured and correlated with

X, which introduces both added variance and

bias in the estimates ŴZX . The knowledge of

the structure of ζ can be used to remove the

bias from ŴZX . However, the statistical un-

certainty additionally introduced by ζ cannot

be removed other than by increasing the sam-

ple size. We can roughly estimate that uncer-

tainty by approximating the variance of ζ as

var(ζ) = var(WZY Y ) ≈ |WZY |2var(Y ) and

using

var(ŴZX) ≈ (Tbvar(X))−1var(�+ ζ)

≈ (Tbvar(X))−1(var(�) + |WZY |2var(Y )),

(45)

where |WZY |2 here is understood as the average

2-norm of the rows of WZY . In the limit where

the size of the hidden neuronal population is

large, we can further transform Eq. (45) to

var(ŴZX) ≈ sNhA
2
w/Tb, (46)

where Nh is the number of neurons in the un-

observed neuronal population, Aw is the root

mean square average of the (nonzero) neuronal

connectivity weights, s is the sparsity of the

connectivity matrix, and Tb is the number of

observations containing a given input-output

neuronal pair.

Eq. (46) is similar to Eq. (28) in Section

3.1.4 and provides a useful estimate of the gen-

eral error of the shotgun connectivity estima-

tion. We see that the primary source of that

error is the uncontrolled fluctuations of the in-

put from the hidden neurons into the observed

neuronal population.

Eq. (46) also illustrates the dependence of

the connectivity estimation error on the shot-

gun imaging parameters such as the size of hid-

den populations, the strength of neuronal con-

nectivity, the number of observations, and the

observations sparseness. Figure 3 compares these

predictions with the results of direct numerical

simulations.

3.4 Numerical simulations of the shotgun

connectivity estimation

In this section we perform numerical simula-

tions of neuronal connectivity estimation from

partially observed neuronal populations in re-

alistic GLMs of neuronal population activity.

As our first case study, we examine the shot-

gun connectivity estimation in a small model of

N = 10 neuron synfire network, shown in Fig-

ure 4. Synfire networks present one of the worst

examples of the hidden inputs problem, where

the correlations can propagate over large dis-

tances and emulate strong connections among

remote neurons.

We first inspect the scenario where a fixed

population of 5 neurons is being continuously

imaged, as indicated in Figure 4 by solid cir-

cles. This scenario corresponds to the typical

neuroimaging situation in which a fixed popu-

lation of neurons is continuously observed while

the rest of neurons are missing. As a measure

used to estimate the connectivity we use the

time-shifted correlogram of lag 1 bin, widely

employed in functional connectivity literature,
and the direct GLM estimation following (Mi-

shchenko et al., 2011). The results of these sim-
ulations are shown in Figure 5. One can see

that either the correlogram and the GLM es-

timation in this scenario produce strong spuri-

ous connections, namely, such seen between the

neurons 4 and 9, 3 and 6, and 9 and 6.

We then simulate the connectivity matrix

estimation in the same model using the block-

wise round-robin imaging strategy of Section
3.2, with the block size of 2 neurons, and the

numerical EM connectivity matrix estimation
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Fig. 3 The properties of the shotgun connectivity
estimator in relation to the missing data. From top
to bottom, the posterior error of the shotgun estima-
tor is shown in relation to the observations’ sparse-
ness, the total number of observations, the size of
hidden populations, and the rms average connectiv-
ity strength. The results of numerical simulations are
shown with solid line and dashed lines show the the-
oretical predictions. The simulation parameters are
described in Table 1.
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Fig. 4 The layout of the model synfire neuronal net-
work used in the simulations in this paper.

algorithm of Section 2.3. The results of these

simulations are shown in Figure 6. Despite the

fact that at most 4 neurons are observed in this

scenario at any given time, the complete con-

nectivity matrix is indeed recovered well. The

strength of the false-positive connections be-

tween the neurons 4-9, 3-6 and 9-6 is reduced

by a factor of 2 to 3 as compared to Figure

5. At the same time, the reconstructions ob-

tained are substantially more noisy and require

significantly more observations to suppress ad-

ditional noise. We observe that the accuracy of

the shotgun connectivity estimation with the

observation time T in these simulations is com-

parable to that using the complete observation

and the imaging time p2T , the bottom panel in

Figure 6. This is in general agreement with the

results of Section 3.3.

Finally, we use our algorithms to perform

the simulations of the shotgun connectivity es-

timation in a realistic model of weakly coupled

cortical neuronal networks of N = 50 neurons.

The results of these simulations are shown in

Figure 7. We again are able to recover the com-

plete connectivity matrix from partial obser-

vations of neuronal population activity. Once
again, the data size necessary to achieve a given

accuracy is significantly increased when using
sparse observations as compared to that ob-

tained when observing the complete neuronal

population. Specifically, if good connectivity re-

constructions are obtained in our simulations

with entire network observed from a total of
T = 60 seconds of neuronal activity, in the sim-

ulations with p = 20% block-wise round-robin
imaging the total observation time needed to

achieve similar reconstructions’ accuracy app-

roached T = 3000 seconds, the lower panel in

Figure 7.
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20 Yuriy Mishchenko

Fig. 5 The hidden inputs problem in the model syn-
fire network in Figure 4. The top panel shows the
true connectivity matrix for the circuit. The mid-
dle panel shows the connectivity matrix estimation
result using the time-shifted correlogram calculated
for the population of neurons indicated in Figure 4
with solid circles and T = 10 seconds of neuronal
activity data. The bottom panel shows the GLM es-
timation of the same connectivity matrix performed
under the same conditions. The simulation parame-
ters are described in Table 2.

4 Discussion and Conclusions

The shotgun sampling solution of the common

inputs problem is a promising approach for func-
tional estimation of neuronal connectivity in

large neuronal networks in the brain without

requiring the simultaneous imaging of entire

neuronal populations. By statistically estimat-

ing the neuronal connectivity from a collection

of partial observations of different neuronal sub-

populations’ activity patterns, the shotgun sam-

pling offers a possibility of recovering the con-
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Fig. 6 Estimation of the complete connectivity ma-
trix in the model synfire network in Figure 4 us-
ing the block-wise round-robin sparse neuronal ac-
tivity imaging. The top panel shows the result of the
connectivity matrix estimation using this approach
and T = 50 seconds of neuronal activity data. The
middle panel shows, for comparison, a similar re-
construction using the complete observations data
and T = 10 seconds of neuronal activity. The bot-
tom panel compares the quality of the connectiv-
ity matrix reconstruction for the block-wise round-
robin imaging (diamonds) and the complete observa-
tion (solid line). The block-wise round-robin imaging
points are placed for comparison at the ”equivalent”
times calculated as T � = p2T . The simulation param-
eters are described in Table 2.

nectivity matrix in realistically large neuronal

circuits by using limited imaging resources.

In this paper, we establish analytically and

in simulations certain important properties of

such shotgun neuronal connectivity estimation.

In Theorem 1 of Section 3.1.1 we determine

the sufficient and necessary conditions for the

recovery of complete connectivity matrices of

large neuronal populations to be possible from

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Consistent neural connectivity estimation using shotgun sampling 21

−5 −4 −3 −2 −1 0 1 2
−5

−4

−3

−2

−1

0

1

2

Actual connection weights

In
fe

rr
e
d
 c

o
n
n
e
c
ti
o
n
 w

e
ig

h
ts

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

Iteration Number

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

 

 

T=300 sec

T=1500 sec

T=3000 sec

Fig. 7 The shotgun connectivity estimation in a
model of a realistic weakly coupled cortical neu-
ronal network. The upper panel shows the result
of the reconstruction of the complete connectivity
matrix in such a model using p = 0.2 block-wise
round-robin sparse neuronal activity imaging and
T = 3000 seconds of observation data. The multi-
plicative bias seen in the reconstructed weights is
the finite time-discretization bias discussed in (Mi-
shchenko et al., 2011) (not corrected here). The re-
constructed connection weights reproduce the true
connection weights well. However, the reconstructed
connectivity matrices are more noisy. The bottom
panel shows the correlation coefficient of the recon-
structed and true connection weights as a function of
the EM algorithm’s iteration number, for T = 300,
T = 1500, and T = 3000 seconds of total observa-
tion time. Solid gray line represents the baseline re-
construction obtained in the same model using the
complete observation dataset and T = 60 seconds
of neuronal activity. The simulation parameters are
described in Table 3.

shotgun-like sparse neuronal activity imaging.
In Section 3.1.2, 3.1.3 and 3.1.4 we examine

more closely the shotgun connectivity estima-

tion in linear models of neuronal population ac-

tivity and derive analytically the observations’

log-likelihood, associated maximum likelihood

estimator, and certain key properties of that

estimator. In Section 3.1.5, we present explicit

sufficient conditions for the correctness of the

shotgun connectivity estimation in certain lin-

ear and generalized linear neuronal activity mod-

els, where the neuronal firing rates can be de-

scribed as a general nonlinear function of lin-

early summed inputs. These cover a great vari-

ety of practically interesting network models of

neuronal activity. In particular, we show that

the same-time and time-shifted covariance ma-

trices E[XtX T
t ] and E[Xt+1X T

t ] are sufficient in

linear and exponential generalized linear mod-

els of neuronal activity to uniquely identify the

complete connectivity matrix. In general GLM

of neuronal activity, we find that the observa-

tion of all triples (Xi,t+1,Xjt,Xkt) is sufficient

for the complete recovery of the connectivity

matrix.

We find that the shotgun observations’ log-

likelihood can have multiple local maxima even

when the MLE of the original neuronal activ-

ity model is free of spurious local solutions. In

particular, in the linear neuronal activity model

where the MLE in full-observations case is glob-

ally and locally unique, we show in Section 3.1.2

that two local maxima exist in the shotgun im-

aging setting—the true solution Ŵtrue = W
and the “mirror” solution Ŵmirror ≈ −W . This

property of the shotgun imaging MLE can pose

difficulties for iterative ML algorithms such as

the Expectation Maximization algorithm. Sim-

ple heuristics may be able to help avoid the

mirror optimum-like solutions in practice. For

example, one can decide to inspect the “mirror”

solution likelihoods for all candidate ML solu-

tions Ŵ. This strategy, however, may not be

plausible if the fraction of observed neurons p is

small, as the difference between the likelihoods

of the true and the mirror solutions may quickly

approach zero in that settings. Alternative res-

olution of the mirror-optima problem can be

based on the use of a-priori information. Such

a-priori information may include the excitatory

or inhibitory identity of one or several neurons

in the population or the relative abundances

of the excitatory and inhibitory neurons, which

may be rather easy to estimate beforehand. By

requiring given neurons in the reconstruction to

be excitatory or by requiring a particular split

between the abundances of excitatory and in-

hibitory neurons the sign of the solution can be

fixed.
We find that the lack of complete observ-

ability of neuronal populations in shotgun-like

imaging leads to an increase in the statistical

error of the associated connectivity estimator,

warranting a respective increase in the imaging

time in order to suppress that error. We find

that the minimum shotgun imaging data size
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needs to increase proportionally to the num-

ber of neurons in unobserved neuronal popula-

tions as well as the square-average of neuronal

connection weights’ strength. Furthermore, the

data size needs to increase as the inverse square

of the average fraction of neurons covered by a

single observation. These scalings are inoppor-

tune for the reconstructions of neuronal connec-

tivity, if the fraction of observed neurons needs

to remain small.

Theorem 1 has important consequences for

the design of alternative shotgun-like sparse neu-

ronal activity imaging experiments. In particu-

lar, it establishes that any sparse neuronal ac-

tivity imaging scheme that covers a particular

set of ”identifying” neuronal activity distribu-

tions will be sufficient for the recovery of com-

plete connectivity matrix in a neuronal popu-

lation. It is not important how or in what man-

ner such coverage is provided, it is important

only that such coverage is complete. This re-

sult allows for designing alternative shotgun-

like sparse neuronal activity sampling proto-

cols, optimized for different particular experi-

mental settings.

Taking advantage of this result, in Section

3.2 we propose experimentally particularly ad-

vantageous alternative organization of shotgun

neuronal activity imaging in the form of multi-

block scanning of neuronal populations’ activ-

ity. In this approach, the neurons are imaged

sequentially in two or more contiguous blocks

of ”input” and ”output” neurons, with all pos-

sible combinations of input and output blocks

observed throughout the experiment. This ex-

periment design guarantees the coverage of all

same-time and time-shifted neuronal activity

pairs—necessary for the reconstruction of com-

plete connectivity matrix in linear and expo-

nential linear neuronal activity models—and has

further advantage of allowing straightforward

implementation using existing calcium imaging

tools, as well as a simpler numerical connectiv-

ity estimation problem. We hope that the con-

ceptual simplicity and the possibility of straight-
forward implementation will allow the “block-

wise round-robin” sparse neuronal activity im-
aging to be realized experimentally in near fu-

ture.

Another important issue raised by this study

is the development of scalable approaches for

numerical connectivity estimation in shotgun-

like imaging setting. We demonstrated here the

shotgun connectivity estimation in model neu-

ronal populations with up to N = 50 neurons.

In practice, the reconstructions of real neuronal

circuits will require solving the same computa-

tional problem for thousands if not millions of

neurons. The SMC EM procedure proposed in

this work for general shotgun estimation is ef-

ficient, requiring O(N2M2T ) time for the E-

step and O(N2MT ) time for the M-step, as

well as parallelizable, making the solution of the

above problems possible on high-performance

computing infrastructures already existing in

the world. Faster sampling schemes for hidden

neuronal populations’ activity may be also in-

vestigated, for example, such as the fast Met-

ropolis-Hastings algorithm proposed in (Mish-

chenko and Paninski, 2011), which can reduce

the cost of the E-step to O(N2MT ).

The requirement to remember up to M ex-

amples of the entire hidden neuronal popula-

tion’s activity was the most significant burden

on the numerical SMC EM algorithm in this

work. For instance, for N = 104 neurons, M =

100 EM samples and T = 104 seconds of neu-

ronal activity recorded at 100 Hz, the sample of

the hidden neuronal activities constitutes stag-

gering 1012 neuronal activity states. While this

problem can be solved by partitioning the data

over the nodes of a supercomputing infrastruc-

ture, the search of alternative approaches for

reducing the memory footprint of the shotgun

EM connectivity estimation may be of interest.

Among the possible solutions of this prob-

lem is the use of alternative imaging schemes,

such as the block-wise round-robin strategy de-

scribed above, where the estimation of the con-

nectivity matrix can be performed block-wise,

whereas only one block of the connectivity ma-

trix corresponding to the given input and out-

put blocks of neurons observed at certain time
interval needs to be considered. While not af-

fecting N or M , this reduces T to at most
such encompassing the observations involving

the given input and output neuron blocks.

Another interesting option is to use approx-

imate models of the hidden neuronal popula-

tions’ input. For example, one can try to model

the combined inputs from the hidden neurons

into the observed neurons by using a multivari-
ate Gaussian distribution, constructed based

on the current estimate of the connectivity be-

tween the hidden and the observed neurons.

Finally, a promising option is to make use

of the sufficient statistics of the connectivity

estimation problem in a given neuronal activ-
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ity model. This would allow using smaller suf-

ficient statistics in the place of the direct large

hidden neuronal populations’ activity samples.

An example of this approach had been very suc-

cessfully implemented in (Soudry et al., 2015).

More generally, we provide the formulas neces-

sary to implement such an approach in differ-

ent certain neuronal activity models in Section

3.1.6.

This works leaves several questions open,

which will require further investigation. Among

these is the question of finding identifying sets

of general neuronal population activity models

and, in particular, of the possibility to unique-

ly identify any network-like model of neuronal

activity by just input-output pairwise distribu-

tions P (Xi,t+1,Xjt). Another set of questions is

related to alternative design of sparse neuronal

activity imaging experiments. Namely, what are

other experimentally interesting sparse neuronal

activity imaging designs? Do different sparse

imaging strategies offer different speeds of con-

vergence of neuronal connectivity estimation?

What are the properties of such alternative strate-

gies? We hope that this work will stimulate fur-

ther research into these theoretical topics as

well as facilitate experimental applications of

sparse neuronal activity imaging strategies.
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A Sequential Monte Carlo Expectation
Maximization algorithm for numerical

solution of the shotgun connectivity
estimation problem in general Markov

models of neuronal population activity

The EM algorithm (Dempster et al., 1977) is the
standard method of statistical inference in the pres-
ence of missing data. Briefly, the EM algorithm pro-
duces at least a locally maximum likelihood esti-
mate of the parameters of a model P (X,Y |θ) given
a set of observations X with the data Y missing,
θ̂ = argmax

�
Y P (θ, Y |X). The EM algorithm pro-

duces a sequence of parameter estimates θ̂k by iter-

atively maximizing the functions Q(θ|θ̂k),

Q(θ|θ̂k) = EP (Y |X,θ̂k)
[logP (X,Y, θ)], (47)

where Q(θ|θ̂k) at each step is calculated by con-
structing M samples of the unavailable data Y from
P (Y |X, θ̂k) and using the following average,

Q(θ|θ̂) = 1

M

M�

l=1

logP (X,Y l, θ). (48)

In the case of the shotgun sampling, the sam-
pling step of the EM algorithm can be implemented
using the forward-backward algorithm (Rabiner, 1989)
and the sequential Monte-Carlo method also known
as the Particle Filtering (Godsill et al., 2001). In
this case, the distribution of the hidden neuronal
activities at every observation is modeled by a sam-
ple of M hidden neurons’ activity configurations,
Y l
t ∼ P (Yt|X,W), each referred to as a “particle”.

In order to produce this sample, it is advan-
tageous to reformulate the sampling problem Yt ∼
P (Yt|X,W) in a more convenient way as such apply-
ing to the drawing of a sample of the complete neu-
ronal activity configurations Xt, in such a way that
the activity of the parts of the neuronal population
observed at time t match with the available obser-
vations data Xt. In this sense, we view the activity
of the entire neuronal population Xt as the “hidden”
state, and the mapping of Xt onto the subsets of ob-
served neurons, X : Xt �→ Xt, as the observations of
that state. In this form, the problem becomes that of
sampling the sequence of the hidden states Xt from
a Hidden Markov Model given the observations Xt.

This problem now can be efficiently solved using
the standard forward-backward algorithm.

Forward-backward algorithm consists of two passes.
In the first forward pass, a sequence of samples of
hidden states is produced according to P (Xt|X1:t,W),
where X1:t refers to the collection of all observed
neuronal activities up to and including the time t.
Each sample in that sequence contains M examples
of the complete neuronal population activity, Xt ∼
P (Xt|X1:t,W) satisfying the constraint X(Xt) = Xt,
while the entire sequence contains T such samples
t = 1 . . . T , where T is the number of the observa-
tions, so that {Xk

t , k = 1 . . .M, t = 1 . . . T}.
Forward pass samples can be constructed itera-

tively by drawing the first sample X0 from a prior
distribution P (X0) and then constructing each next
sample according to,

Xt ∼ P (Xt|X1:t) =
Z−1

�
Xt−1

P (Xt|Xt)P (Xt|Xt−1)P (Xt−1|X1:t−1).

(49)

Here Z is a normalization constant to be calculated
below and we stopped writing parameter W in the
probability densities for brevity.

According to Eq. (49), the forward step at each t

can be realized by taking the previous sample’s par-
ticles Xk

t−1 ∼ P (Xt−1|X1:t−1) and ”moving” them
according to the transition probabilities

P (Xk
t−1 → Xk

t ) = Z−1P (Xt|Xk
t )P (Xk

t |Xk
t−1). (50)
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24 Yuriy Mishchenko

Eq. (50) can be simplified by noting that P (Xt|Xt)
has the effect of only restricting the moves Xk

t−1 →
Xk

t to such that make the activity patterns of the
neurons observed in Xk

t match the available obser-
vation Xt,

P (Xt|Xk
t ) ∝

�
1 if Xk

t = Xt

0 otherwise
(51)

By using this and taking advantage of the factoriza-
tion of the probabilities P (Xt|Xt−1) over individual
neurons i, P (Xt|Xt−1) =

�
i P (Xi,t|Xt−1), we obtain

the normalization constant Z explicitly as,

Z = EXt−1
[P (Xt|Xt−1)] =

1

M

�

k

P (Xt|Xk
t−1). (52)

With this simplification, we arrive at the final algo-
rithm for the forward step:
Forward Step

(i) Select one Xk
t−1 from the previous t−1 sample

Xk
t−1 ∼ P (Xt−1|X1:t−1) with probability

p(k) = 1/M · P (Xt|Xk
t−1)/Z

= P (Xt|Xk
t−1)/

�
k P (Xt|Xk

t−1);
,

where

P (Xt|Xt−1) =
�

Xt

P (Xt|Xt)P (Xt|Xt−1).

(ii) Set in Xk
t the activity of the neurons i observed

in observation t as Xk
it = Xit;

(iii) Set in Xk
t the activity of the neurons i� not ob-

served in observation t as Xk
i�t ∼ P (Xi�t|Xk

t−1).

In the backward pass, the samples (Xt−1,Xt) ∼
P (Xt−1,Xt|X) need to be constructed for each t con-
ditional on all observations X = {Xt, t = 1 . . . T}.
These samples can be constructed using the follow-
ing relationship that we use from (Paninski et al.,
2010),

P (Xt,Xt+1|X) = P (Xt|X1:t)
P (Xt+1|Xt)
P (Xt+1|X1:t)

P (Xt+1|X),

(53)

where P (Xt+1|X1:t) =
�

Xt
P (Xt+1|Xt)P (Xt|X1:t) =

EXt [P (Xt+1|Xt)], the average being over the forward
pass sample Xk

t ∼ P (Xt|X1:t).
According to Eq. (53), the backward step can be

constructed by first combining into pairs the forward
pass samples for observation t, Xk

t ∼ P (Xt|X1:t), and
the backward pass samples for observation t + 1,
X l

t+1 ∼ P (Xt+1|X), and then weighing these with

the weights wkl
t = P (X l

t+1|Xk
t )/

�
k P (X l

t+1|Xk
t ). Thus

formed pairs (Xk
t ,X l

t+1) are distributed according

to (Xk
t ,X l

t+1) ∼ P (Xt|X1:t)P (Xt+1|X), and the ex-
pectation value of any functional F (Xt,Xt+1) over
P (Xt,Xt+1|X) can be calculated by using such pairs
as E[F ] = 1/M

�
kl F (Xk

t ,X l
t+1)w

kl
t . In addition,

P (Xt|X) =
�

Xt+1
P (Xt,Xt+1|X) and the next back-

ward pass sample for observation t, Xk
t ∼ P (Xt|X),

can be constructed by drawing with replacement Xk
t

from (Xk
t ,X l

t+1) with probabilities p(k) ∝
�

l w
kl
t .

Thus, we arrive at the final backward step algo-
rithm as follows:
Backward Step

(i) Form M2 pairs (Xk
t ,X l

t+1) for each available

forward pass Xk
t ∼ P (Xt|X1:t) and backward

pass X l
t+1 ∼ P (Xt+1|X);

(ii) Calculate the weights
wkl

t = P (X l
t+1|Xk

t )/
�

k P (X l
t+1|Xk

t );
(iii) As the next backward pass sample example

X l
t ∼ P (Xt|X) select with replacement Xk

t from
the pairs (Xk

t ,X l
t+1) with the probabilities p(k) =

1/M
�

l w
kl
t ;

(iv) The expectations values of a functional
F (Xt,Xt+1), EP (Xt,Xt+1|X)[F (Xt,Xt+1)], are given

by E[F ] = 1/M
�

kl F (Xk
t ,X l

t+1)w
kl
t .

In the optimization step of the EM algorithm, we
maximize with respect to W the following function,

Q(W|Ŵ) = EP (Y |X,Ŵ)[logP (X,Y,W)]

= logP (W) + EP (X0|X,Ŵ)[logP (X0)]

+
�
t
EP (Xt−1,Xt|X,Ŵ)[logP (Xt|Xt−1,W)].

(54)

In order to calculate Q(W|Ŵ) it is sufficient to know
the samples (Xk

t ,X l
t+1) ∼ P (Xt|X1:t)P (Xt+1|X) and

the weights wkl
t . Moreover, Q(W|Ŵ) can be split

into a sum over the rows of the matrix W, Wi, as
Q(W|Ŵ) =

�
i Q(Wi|Ŵ), with Q(Wi|Ŵ) given by

Q(Wi|Ŵ) = logP (Wi) + EP (X0|X,Ŵ)[logP (Xi0)]

+
�
t
EP (Xt−1,Xt|X,Ŵ)[logP (Xit|Xt−1,Wi)].

(55)

Thus, the optimization of Eq. (54) can be solved
for each row i independently, reducing the complex-
ity of the optimization problem from quadratic in
the number of neurons N to linear. Moreover, inho-
mogeneous Poisson point-process models of neuronal
activity with log-concave rate functions such as the
exponential f(.) = exp(.) result in Q(Wi|Ŵ) that are
convex, which allows their numerical optimization to
be solved efficiently for very large N , using the stan-
dard gradient descent methods (Boyd, 2004).

B Calculation of the partial observations

log-likelihood in linear neuronal activity

model

In this appendix we calculate the integral

P (Zt, Xt|Ŵ ) ∝�
dYt exp

�
− (Zt −WXt)2/2− XT

t C−1Xt/2
�
,

(56)

of the model (18), where the input neuronal activi-
ties are distributed according to a correlated Gaus-
sian distribution with zero mean and the covariance
matrix C,

P (Xt) ∝ exp(−XT
t C−1Xt/2),

and the integration is performed over the part of
Xt, Yt, that is not observed during an observation
t. The part of Xt observed during the observation
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Consistent neural connectivity estimation using shotgun sampling 25

t, respectively, is held fixed and equals Xt. W is a
single row-vector from the full connectivity matrix
W corresponding to the input connection weights of
one “output” neuron.

The calculations in Eq. (56) can be simplified
if we represent the integral in an invariant form by
introducing δ-functions that will restrict the integra-
tion over Xt to the hyperplane defined by fixing Xt,
namely,

�
dYt exp

�
− (Zt −WXt)2/2− XT

t C−1Xt/2
�
=

�
dXt

i=m�
i=1

δ(Xit −Xit)

× exp
�
− (Zt −WXt)2/2− XT

t C−1Xt/2
�
.

(57)

Here m is the number of the observed neuronal in-
puts and w.l.o.g. we assumed that the observed in-
puts Xt comprise the first m elements of Xt. We now
replace the δ-functions in Eq. (57) with their Fourier
representation, δ(x) = 1

2π

�
dke−ikx, yielding

�
dXtdK

i=N�
i=m+1

δ(Ki) exp
�
− (Zt −WXt)2/2

−iKT (Xt − X̄t)− XT
t C−1Xt/2

�
,

(58)

where X̄t is a full-size column-vector of neuronal in-
puts, with the first m elements equal to Xt and the
rest of the elements zero (these do not affect the
integral since Ki = 0 for i > m). In Eq. (58), the in-
tegral over Xt can be taken explicitly as a Gaussian,
resulting in

�
dK

i=N�
i=m+1

δ(Ki) exp(iX̄T
t K)

√
detΓ

× exp
�
− Z2

t /2 + (ZtW − iKT )Γ (ZtWT − iK)/2
�
,

(59)

where the matrix Γ is identified from the part of
the argument of the exponential in Eq. (58) that is
quadratic in Xt, Γ−1 = (C−1 +WTW ). We expand
the second term under the exponential in Eq. (59)
as

�
dK

i=N�
i=m+1

δ(Ki)
√
detΓ

× exp
�
− Z2

t /2 + Z2
t WΓWT /2

+iX̄T
t K − iZtWΓK −KTΓK/2

�
.

(60)

The δ-functions in Eq. (60) subsequently restrict the
integration over K to only such values where Ki = 0
for all m < i ≤ N . Thus, we rewrite this integration
as

�
dKX

√
detΓ

× exp
�
− Z2

t /2 + Z2
t WΓWT /2

+i(X̄T
t − iZtWΓ )XKX −KT

XΓXKX/2
�
,

(61)

where the subscript X means restriction to the first
m elements, as contained in the observed set of neu-
ronal inputs Xt. Thus obtained integration over KX

is again Gaussian, and so we can perform it explic-
itly producing

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) ∝�
detΓ
detΓX

exp
�
− Z2

t /2 + Z2
t WΓWT /2

−(X̄T
t − ZtWΓ )XΓ−1

X (X̄t − ZtΓWT )X/2
�
.

(62)

As a simple check, we take C = I (uncorrelated
inputs) and obtain by repeatedly using Woodbury
lemma,

Γ = (I +WTW )−1 = I −WTW/(1 +W2)
ΓX = I −WT

XWX/(1 +W2)
Γ−1
X = I +WT

XWX/(1 +W2
Y )

(WΓ ) = W/(1 +W2)
(WΓ )X = WX/(1 +W2)

(63)

where WX and WY are the restrictions of W to
the subsets of the neuronal inputs Xt and Yt, re-
spectively, and W2 = WWT . For detΓ and detΓX ,
we obtain detΓ = (1 + W2)−1 and detΓX = (1 +
W2

Y )/(1 +W2), so that,

detΓ/detΓX = 1/(1 +W2
Y ).

Similarly,

−Z2
t + Z2

t WΓWT = −Z2
t /(1 +W2)

XT
t Γ−1

X Xt = X2
t + (WXXt)2/(1 +W2

Y )
Zt(WΓ )XΓ−1

X Xt = Zt(WXXt)/(1 +W2
Y )

Z2
t (WΓ )XΓ−1

X (ΓWT )X = −Z2
t W

2
X/((1 +W2)(1 +W2

Y ))

(64)

Bringing everything in Eqs.(64) together, we obtain
for the case C = I,

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) =

(1 +W2
Y )−1/2 exp

�
− 1

2

�
Z2

t
1+W 2

Y
+ 2ZtWXXt

1+W 2
Y

− (WXXt)
2

1+W 2
Y

�
− X2

t
2

�
.

(65)

The correctness of the expression (65) can be verified
by direct integration of the original integral using
C = I, which is relatively simple.

For the case of general C, similarly by repeated
use of Woodbury lemma we obtain

Γ = C − C WTW
1+WCWT C

ΓX = CXX − CX∗ WTW
1+WCWT C∗X

Γ−1
X = C−1

XX + C−1
XX

CX∗WTWC∗X
1+B2 C−1

XX

(WΓ ) = WC
(1+WCWT )

(WΓ )X = WC∗X
(1+WCWT )

(66)

where

B2 = WCWT −WC∗XC−1
XXCX∗WT ,

and CXX is the square block of the full covariance
matrix C corresponding to the observed inputs Xt,
while CX∗ and C∗X are the rectangular blocks of the
full covariance matrix containing all the rows or the
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26 Yuriy Mishchenko

columns corresponding to the observed inputs Xt.
Then, for the determinant factor we obtain,

detΓ = detC/(1 +WCWT )

and

detΓX = detCXX(1 +B2)/(1 +WCWT ).

Consequently,

�
detΓ

detΓX
=

�
detC

detCXX
· (1 +B2)−1/2. (67)

By representing

C =

�
CXX CXY

CY X CY Y

�

we can reorder the quantity B2 as

B2 = WY (CY Y − CY XC−1
XXCXY )WT

Y .

We see then that B2 plays the role here of W2
Y in

Eq. (65). We further proceed to simplify the terms
under the exponent in Eq. (62) using Eqs.(66). This
highly tedious calculation results in the following,

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) ∝�
detC

detCXX
(1 +B2)−1/2

× exp
�
− 1

1+B2

Z2
t
2

− 1
2
XT

t C−1
XXXt

+
ZtWC∗XC−1

XX
Xt

1+B2 − 1
2

(WC∗XC−1

XX
Xt)

2

1+B2

�
.

(68)

As a consistency check, we verify that Eq. (68) re-
duces to Eq. (65) if C = I. Finally, we rewrite Eq. (68)
more concisely as

�
dYt exp(−(Zt −WXt)2/2− XT

t C−1Xt/2) ∝�
detC

detCXX
(1 +B2)−1/2

× exp
�
− 1

2

(Zt−WC∗XC−1

XX
Xt)

2

1+B2 − 1
2
XT

t C−1
XXXt

�

(69)

C Additional proofs

In this appendix we present the complete proofs of
some of the proposition found in the main text.

Theorem 1 (restated) Let P (X|W) be a statistical

model of neuronal population activity X = {Xt, t =
1, 2, . . .} and let S = {St, t = 1, 2, . . .}, S ∼ P (S),
be a series of partial observations of that model’s ac-
tivity over subpopulations of neurons St. Let X and S

jointly define a stationary and ergodic stochastic pro-
cess and assume that the classical MLE regularity con-

ditions hold for the model P (X|W), namely:
(A1) the parameter space W ∈ W is compact;
(A2) all distribution densities P (Xt:t+k|W) are con-
tinuous in W;

(A3) E
��� logP (Xt:t+k|St:t+k

|Ŵ)
��
�
< ∞ for all Ŵ and

St:t+k, where the expectation is over the stationary dis-
tribution P (Xt:t+k|W) for the true W.
Assume further that the model P (X|W) is uniquely

identified in the sense of Definition 1 by a set of distri-

butions P(S) = {P (Xt:t+k|S1:k+1
| W), S1:k+1 ∈ S}

for some S. Then, for any model of the partial ob-
servations P (S) such that the support S� = {St:t+k :
P (St:t+k) > 0} completely covers S in the sense of

Definition 2 the ML estimator

ŴT (X , S) = argmax
Ŵ

L(Ŵ|X , S;T ), (70)

where

L(Ŵ|X , S;T ) =
t=T�
t=1

logP (Xt:t+k|St:t+k
, St:t+k|Ŵ),

(71)

is consistent.

Proof Under the conditions of the theorem, consider
the average log-likelihood function

lT (Ŵ|X , S) =

1
T

t=T�
t=1

logP (Xt:t+k|St:t+k
, St:t+k|Ŵ).

(72)

By the assumption of ergodicity, in the limit T → ∞
almost surely

lT (Ŵ|X , S) → EP (Xt:t+k|St:t+k
,St:t+k|W)

�

logP (Xt:t+k|St:t+k
, St:t+k|Ŵ)

�
,

(73)

where P (Xt:t+k|St:t+k
, St:t+k|W) is the stationary dis-

tribution of the model under the true parameter W.
By construction, the tuples St:t+k and Xt:t+k are
statistically independent, therefore, we have in the
limit T → ∞,

l∞(Ŵ) = EP (St:t+k)

�
EP (Xt:t+k|St:t+k

|W)

�

logP (Xt:t+k|St:t+k
|Ŵ)

��
+ const.

(74)

By the assumption of the coverage of the identify-
ing set P(S) by the support of P (St:t+k) and Gibbs

inequality, l∞(Ŵ) achieves maximum only and only
when Ŵ = W, providing for the identifiability condi-
tion of the MLE. Together with the regularity condi-
tions (A1)-(A3), then, the series of estimates ŴT =
argmax lT (Ŵ) converges in probability to Ŵ =
argmax l∞(Ŵ) = W as T → ∞.

Lemma 1 (restated) The expected log-likelihood func-
tion of model (18) is

l(Ŵi, Σ̂) =

−1/2E
�1+WiΣWT

i −2ŴiAXk
WT

i +ŴiA�
Xk

ŴT
i

1+B2
ik

+log(1 +B2
ik)

�

−1/2E
�
Tr[ΣXkXk

Σ̂−1
XtXt

] + log det Σ̂XkXk

�
,

(75)

where the subscript-notation in Σ refers to the blocks of

Σ corresponding to the neuronal inputs identified by Xt

and Yt, with * referring to all row or column elements.

B2
ik, AXk

and A�
Xk

are

AXk
= Σ̂∗Xt Σ̂

−1
XtXt

ΣXt∗
A�

Xk
= Σ̂∗Xt Σ̂

−1
XtXt

ΣXtXt Σ̂
−1
XtXt

Σ̂Xt∗
B2

ik = Ŵi(Σ̂ − Σ̂∗Xk
Σ̂−1

XkXk
Σ̂Xk∗)Ŵ

T
i

(76)
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Consistent neural connectivity estimation using shotgun sampling 27

Wi and Σ are the true connection weights and covari-

ance matrix parameters, respectively, and the average
is over all different subsets of observed neurons Xk.

Proof Consider the average log-likelihood of the Ti

realizations Zi = {Zik, k = 1 . . . Ti} andX = {Xk, k =
1 . . . Ti} from model (18), marginal over the missing
data Y = {Yk, k = 1 . . . Ti},

l(Wi,Σ|Zi, X) =
1

Ti
logP (Zi, X|Wi,Σ), (77)

where P (Zi, X|Wi,Σ) =
�
dY P (Zi, X, Y |Wi,Σ). Note

that Zi and X in Eq. (77) are the collections of Ti

realizations and so the RHS of Eq. (77) is depen-
dent on Ti in this manner. Also note that Zi and X

are the observed data in this setting, and Y is the
missing data to be integrated out.

When the number of realizations Ti is large, by
the law of large numbers the RHS of Eq. (77) can be
seen to converge in probability to the expected value
of logP (Zik, Xk|Wi,Σ) under the true distribution of
the inputs and outputs P (Zik, Xk),

l(Ŵi, Σ̂|Zi, X) = 1
Ti

logP (Zi, X|Ŵi, Σ̂)

= 1
Ti

k=Ti�
k=1

logP (Zik, Xk|Ŵi, Σ̂)

→ EP (Zik,Xk)[logP (Zik, Xk|Ŵi, Σ̂)].

(78)

In the last line of Eq. (78) we recognize the expected
log-likelihood function,

l(Ŵi, Σ̂) =

E[log
�
dYkP (Zik, Xk, Yk|Ŵi, Σ̂)],

(79)

where the expectation, again, is with respect to the
true density of the observed input and output vari-
ables, Xk and Zik, and we used

P (Zik, Xk|Ŵi, Σ̂) =�
dYkP (Zik, Xk, Yk|Ŵi, Σ̂).

(80)

We see now that it is necessary to calculate

P (Zik, Xk|Ŵi, Σ̂) =�
dYk exp

�
− (Zik − ŴiXk

Xk − ŴiYk
Yk)2/2

−XT
k Σ̂−1Xk/2 + const

�
,

(81)

where Xk is the vector of the complete input activ-
ities formed by suitably combining Xk and Yk, that
is, Xk = [Xk;Yk]. The integral in Eq. (81) can be
calculated explicitly, although the respective calcu-
lation is lengthy and is presented fully in Appendix
B. The result of that calculation is

logP (Zik, Xk|Ŵi, Σ̂) =

−1/2(1 +B2
ik)

−1(Zik − ŴiΣ̂∗Xk
Σ̂−1

XkXk
Xk)2

−1/2 log(1 +B2
ik)−XT

k Σ̂−1
XkXk

Xk/2

−1/2 log det Σ̂XkXk
+ const,

(82)

where the scalars B2
ik are defined by

B2
ik = ŴiΣ̂ŴT

i − ŴiΣ̂∗Xk
Σ̂−1

XkXk
Σ̂Xk∗Ŵ

T
i

= ŴiYk
(Σ̂YkYk

− Σ̂YkXk
Σ̂−1

XkXk
Σ̂XkYk

)ŴT
iYk

,

and the subscripted notation in Σ refers to the blocks
of Σ corresponding to the neuronal inputs identified
by Xk and Yk. For example, ΣXkXk

is the submatrix

of Σ composed of all elements of Σ located at the in-
tersection of the rows and columns identified by Xk.
Similarly, Σ∗Xk

is the rectangular submatrix of Σ
containing all the columns corresponding to the ob-
served inputs Xk, and ΣXk∗ is a similar rectangular
submatrix of all the Xk-rows of Σ.

Using Eq. (82), we can now obtain the final ex-
pression for the expected log-likelihood l(Ŵi, Σ̂),

l(Ŵi, Σ̂) =

−1/2E
� (Zik−ŴiΣ̂∗Xk

Σ̂−1

XkXk
Xk)2

1+B2
ik

+ log(1 +B2
ik)

+XT
k Σ̂−1

XkXk
Xk + log det Σ̂XkXk

�
,

(83)

where the expectation is again under the true distri-
bution of the observed inputs and outputs. We now
take the average in Eq. (83) over all Xk where the set
of neurons contained in Xk is the same. This leads
to the following form expression,

l(Ŵi, Σ̂) =

−1/2E
�1+WiΣWT

i −2ŴiAXk
WT

i +ŴiA�
Xk

ŴT
i

1+B2
ik

+log(1 +B2
ik)

�

−1/2E
�
Tr[ΣXkXk

Σ̂−1
XkXk

] + log det Σ̂XkXk

�
,

(84)

where A and A� are

AXk
= Σ̂∗Xk

Σ̂−1
XkXk

ΣXk∗
A�

Xk
= Σ̂∗Xk

Σ̂−1
XkXk

ΣXkXk
Σ̂−1

XkXk
Σ̂Xk∗,

(85)

and Wi and Σ are the true connection weights and
the true covariance matrix parameters, respectively.
The remaining average in Eq. (84) is over all different
subsets of the observed inputs Xk.

Theorem 3 (restated)Consider a family of general
(”network type”) models of neuronal population activity
described by a N × N connectivity matrix W and a

transition probability density

P (Xt|Xt−1;W) =
i=N�

i=1

P (Xit|WiXt−1), (86)

where Wi is the ith row of W and N = dim(Xt). Let
model (86) define an ergodic stochastic process and let

logP (Xt|Xt−1;W) be L1 integrable under the station-

ary distribution of that process. Also, let lT,N (W|X )
be the average log-likelihood function of the realizations

of neuronal activity patterns X = {Xt, t = 1 . . . T} in
model (86),

lT,N (W|X ) = 1
NT

t=T�
t=1

i=N�
i=1

logP (Xit|Xt−1;W). (87)

In that case, if the sums

Jit =

j=N�

j=1

wijXj,t−1 → N (mi,σ
2
i ) (88)

in distribution as N → ∞ for tuples Xt−1 from P (Xt−1)
and some mi and σi, possibly functions of N (the Cen-

tral Limit Theorem), then the set of all triple-distributions
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P (Xi,t+1,Xjt,Xkt) is uniquely identifying for models

(86) in the limit N → ∞ and, furthermore, lT,N (W|X ) →
l∞(W) almost surely as T,N → ∞, where

l∞(W) = 1
N

i=N�
i=1

�
dXidJi

1

(2πWiΣ(Xi)W
T
i )1/2

×

logP (Xi|Ji +Wiµ(Xi))e−J 2
i /(2WiΣ(Xi)W

T
i )

(89)

and µ(Xi) = E[Xt|Xi,t+1 = Xi] and Σ(Xi) = cov(Xt|
Xi,t+1 = Xi).

Proof Consider the average log-likelihood function
lT,N (W|X ) given by Eq. (87). By the Ergodic theo-
rem, each i-term in Eq. (87) converges almost surely
as T → ∞ to

1
T

t=T�
t=1

logP (Xit|Jit) →
�
dXidJi logP (Xit|Jit)P (Xi,Ji),

(90)

where P (Xi,Ji) is the joint distribution of Jit and
Xit given the stationary distribution P (Xt). We rewrite
P (Xi,Ji) = P (Ji|Xi)P (Xi) and take advantage of
the assumption of the validity of the Central Limit
Theorem for the sums Jit, by which P (Ji|Xi) ap-
proaches the Normal distribution as N → ∞ with
the mean mi = Wiµ(Xi) and the variance σ2

i =
WiΣ(Xi)WT

i . Then, if first T and then N tends to
infinity, lT,N (W|X ) tends to

lT,N (W|X ) → 1
N

i=N�
i=1

�
dXidJi

1

(2πWiΣ(Xi)W
T
i )1/2

× logP (Xi|Ji)e−(Ji−mi)
2/(2WiΣ(Xi)W

T
i ).

(91)

From Eq. (91) it is seen that µ(Xi) and Σ(Xi) are the
sufficient statistics of model (86) in the limit N →
∞. Furthermore, µ(Xi) and Σ(Xi) are defined by
the set of all distributions P (Xi,t+1,Xjt,Xkt). Then
also, the set of all distributions P (Xi,t+1,Xjt,Xkt)
is uniquely identifying for model (86) in the limit
N → ∞, by Corollary 1.
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